Notation: if \((E, d)\) is a metric space, \(x \in E\) and \(r > 0\), we denote by \(B_E(x, r)\) the open ball centered at \(x\) with radius \(r\), that is,

\[
B_E(x, r) = \{y \in E, d(x, y) < r\}.
\]

Reminder: a useful consequence of the Baire Category Theorem is the following.

Proposition. If \(E\) is a Baire space and \(\{F_n\}_{n \geq 1}\) is a sequence of closed subsets such that

\[
\bigcup_{n \geq 1} F_n = E,
\]

then \(\bigcup_{n \geq 1} F_n\) is a dense open subset of \(E\).

Problem 1

1. Is \(c_0(\mathbb{N}) = \{\{u_n\} \in \mathbb{R}^\mathbb{N}, \lim_{n \to \infty} u_n = 0\}\) complete for the norm \(\| \cdot \|_\infty\)?

Yes. Note that it is enough to prove that \(c_0(\mathbb{N})\) is closed in \(\ell^\infty(\mathbb{N})\), which is complete for the given norm. One may also proceed directly: let \(\{u^p\}_{p \in \mathbb{N}}\) be a Cauchy sequence in \(c_0(\mathbb{N})\). For \(\varepsilon > 0\), there exists a rank \(N_\varepsilon\) such that \(\|u^p - u^q\|_\infty < \frac{\varepsilon}{2}\) for \(p, q \geq N_\varepsilon\), that is,

\[
(\dagger) \quad \forall n \in \mathbb{N}, |u^p_n - u^q_n| < \frac{\varepsilon}{2}.
\]

This means that given \(n\) fixed, the sequence \(\{u^p_n\}_{p \in \mathbb{N}}\) is Cauchy in \(\mathbb{R}\) complete. Denote \(u_n = \lim_{p \to \infty} u^p_n\). We shall prove that

1. the sequence \(u\) belongs to \(c_0(\mathbb{N})\),
2. the convergence occurs for the norm \(\| \cdot \|\).

(1) To see that \(u\) vanishes at infinity, observe that the Triangle Inequality gives

\[
|u_n| \leq |u^p_n| + |u_n - u^p_n|.
\]

Fix \(p > N_\varepsilon\) and let \(q \to \infty\) in \((\dagger)\) to get \(|u_n - u^p_n| \leq \frac{\varepsilon}{2}\) for all \(n \in \mathbb{N}\). Since \(u^p \in c_0(\mathbb{N})\), there exists \(N^*_{\varepsilon}\) such that \(n > N^*_{\varepsilon}\) implies \(|u^p_n| < \frac{\varepsilon}{2}\) which guarantees \(|u_n| < \varepsilon\).

(2) As before, fix \(p > N_\varepsilon\), let \(q \to \infty\) in \((\dagger)\) and note that \(N_\varepsilon\) does not depend on \(n\) to see that the convergence is uniform.
2. Is \(C([0,1], \mathbb{R}) \) complete for the norm \(\| f \|_1 = \int_0^1 |f(x)| \, dx \)?

No. Consider for instance (= draw a picture of) the sequence of continuous functions \(f_n \) where
\[
f_n(x) = \begin{cases} 0 & \text{if } x \leq \frac{1}{2} + \frac{1}{n} \\ 1 & \text{if } x \geq \frac{1}{2} + \frac{1}{n} \end{cases}
\]
and \(f_n \) is affine on \(\left(\frac{1}{2}, \frac{1}{2} + \frac{1}{n} \right) \). Check that \(\{ f_n \}_{n \in \mathbb{N}} \)
- is Cauchy with respect to \(\| \cdot \|_1 \);
- converges pointwise to the discontinuous function \(f \) that is constantly 0 on \([0, \frac{1}{2}] \)
 and constantly 1 on \(\left(\frac{1}{2}, 1 \right) \).

Prove that \(\lim_{n \to \infty} \| f_n - f \|_1 = 0 \) to conclude.

\[\text{Problem 2}\]

Let \(E \) and \(F \) be Banach spaces. We denote by \(\mathbb{B} \) the closed ball of radius 1 in \(E \), that is, \(\mathbb{B} = \overline{B}_E(0,1) \). A bounded operator \(T \in \mathcal{L}(E,F) \) is said \textit{compact} if \(\overline{T(\mathbb{B})} \) is compact. The range of \(T \) is denoted by \(r(T) \).

1. Characterize the Banach spaces \(E \) such that the identity map \(\text{Id}_E \) is compact.

Riesz’s Theorem asserts that \(\text{Id}_E \) is compact if and only if \(E \) is finite-dimensional.

2. Let \(T \in \mathcal{L}(E,F) \) with \(r(T) \) finite-dimensional. Prove that \(T \) is compact.

By the assumption on \(r(T) \), it suffices to prove that \(\overline{T(\mathbb{B})} \) is closed and bounded. Closed-ness holds by definition. Boundedness follows from the continuity of \(T \): by definition of the operator norm, \(T(\mathbb{B}) \subset B_{r(T)}(0,\| T \|) \) so \(\overline{T(\mathbb{B})} \subset B_{r(T)}(0,\| T \|) \).

3. Let \(T \in \mathcal{L}(E,F) \) be compact and assume that \(r(T) \) of \(T \) is closed in \(F \).

a. Show the existence of \(\rho > 0 \) such that \(B_{r(T)}(0,\rho) \subset T(\mathbb{B}) \).

The operator \(T \) induces a surjective continuous linear map \(\tilde{T} : E \to r(T) \). Since \(r(T) \) is closed in \(F \) Banach, it is complete so the Open Mapping Theorem applies. Consider for instance the open ball \(B_E(0,1) \). Since, \(\tilde{T} \) is open, \(\tilde{T}(B_E(0,1)) \) is an open subset of \(r(T) \) that contains \(0_F \) so it must contain a ball centered at \(0_F \), say \(B_{r(T)}(0,\rho) \subset \tilde{T}(B_E(0,1)) \subset T(\mathbb{B}) \).

b. Prove that \(r(T) \) is finite-dimensional.

Taking closures in the previous inclusion, the closed ball \(\overline{B_{r(T)}(0,\rho)} \) is closed in \(\overline{T(\mathbb{B})} \), compact by assumption, hence compact itself. Since the dilation by \(\rho^{-1} \) is continuous, it follows that \(\overline{B_{r(T)}(0,1)} \) is compact, so that Riesz’s Theorem implies that \(r(T) \) is finite-dimensional.
4. Let \(E = (C([0, 1]), \| \cdot \|_{\infty}) \). For \(\kappa \in C([0, 1]^2) \), we define a linear map \(T : E \to E \) by
\[
T(f)(x) = \int_0^1 \kappa(x, y)f(y) \, dy.
\]

a. Prove that \(T \) is continuous.
The kernel \(\kappa \) is continuous on the compact \([0, 1]^2\) so it is bounded and one can verify that \(\| \kappa \|_{\infty} \) is a Lipschitz constant for \(T \).

b. Prove that \(T \) is compact.
The same arguments as in 2. show that \(\overline{T(B)} \) is closed and bounded. By Arzelà-Ascoli, it suffices to prove that \(T(B) \) is equicontinuous. This follows from the uniform continuity of \(\kappa \) on the compact \([0, 1]^2\): for \(0 \leq x, z \leq 1 \) and \(f \in B \),
\[
|\kappa(x, y) - \kappa(z, y)| < \varepsilon
\]
Since \(\kappa \) is uniformly continuous, there exists \(\delta > 0 \) such that \(|x - z| < \delta \) implies that \(|\kappa(x, y) - \kappa(z, y)| < \varepsilon \) for all \(x, y, z \) such that \(|x - z| < \delta \). For such \(x \) and \(z \), we get \(|T(f)(x) - T(f)(z)| \leq \varepsilon \), so the family \(\{T(f) : f \in B\} \) is equicontinuous.

Problem 3

1. Let \((E, d)\) and \((F, \delta)\) be metric spaces. Assume \(E \) complete and consider a sequence \(\{f_n\}_{n \geq 1} \) of continuous maps from \(E \) to \(F \) that converges pointwise to \(f : E \to F \).

 a. Consider, for \(n \geq 1 \) and \(\varepsilon > 0 \), the set \(F_{n, \varepsilon}^* = \{x \in E : \forall p \geq n, \delta(f_n(x), f_p(x)) \leq \varepsilon\} \). Show that \(\Omega_\varepsilon = \bigcup_{n \geq 1} F_{n, \varepsilon}^* \) is a dense open subset of \(E \).

 According to the consequence of the Baire Category Theorem recalled above, it suffices to prove that the sets \(F_{n, \varepsilon}^* \) are closed and cover \(E \). For given \(n \) and \(p \), the set \(\{x \in E : \delta(f_n(x), f_p(x)) \leq \varepsilon\} \) is closed as the inverse image of \([0, \varepsilon]\), closed, under the map \(x \mapsto \delta(f_n(x), f_p(x)) \), continuous as composed of continuous functions. Taking the intersection over \(p \geq n \) gives \(F_{n, \varepsilon}^* \) closed. That the union of these sets covers \(E \) follows from the pointwise convergence of the sequence \(\{f_n\}_{n \in \mathbb{N}} \).

 b. Show that every point \(x_0 \in \Omega_\varepsilon \) has a neighborhood \(\mathcal{N} \) such that
\[
\forall x \in \mathcal{N}, \delta(f(x_0), f(x)) \leq 3\varepsilon.
\]

Let \(n \) be such that \(x_0 \in F_{n, \varepsilon}^* \). Since \(F_{n, \varepsilon}^* \) is open and \(f_n \) is continuous, there exists a neighborhood \(\mathcal{N} \) of \(x_0 \) included in \(F_{n, \varepsilon}^* \) such that
\[
\delta(f_n(x_0), f_n(x)) \leq \varepsilon \quad \text{for all } x \in \mathcal{N}.
\]
Since $\mathcal{N} \subset F_{n,\varepsilon}$, we have
\[\delta(f_n(x), f_p(x)) \leq \varepsilon \quad \text{for all } x \in \mathcal{N} \text{ and } p \geq n. \]
Letting $p \to \infty$ in this inequality, we get
\[\delta(f_n(x), f(x)) \leq \varepsilon \quad \text{for all } x \in \mathcal{N}. \]
Now, by the triangle inequality,
\[\delta(f(x), f(x_0)) \leq \delta(f(x), f_n(x)) + \delta(f_n(x), f(x_0)) + \delta(f_n(x_0), f(x_0)) \leq \varepsilon + \varepsilon + \varepsilon \]
for all $x \in \mathcal{N}$.

c. Prove that f is continuous at every point of $\Omega = \bigcap_{n \geq 1} \Omega_{\frac{1}{n}}$ and that $\overline{\Omega} = E$.

Let $x_0 \in \Omega$ and $\varepsilon > 0$. Fix n such that $\frac{1}{n} < \frac{\varepsilon}{3}$. By the previous result, there is a neighborhood \mathcal{N} of x_0 such that $\delta(f(x), f(x_0)) \leq \varepsilon$ for all $x \in \mathcal{N}$, which proves continuity of f at x_0. The fact that Ω is dense in E follows from a. and the Baire Category Theorem.

2. Let f be differentiable on \mathbb{R}. Show that f' is continuous on a dense set.

Apply the previous result to the sequence $f_n : x \mapsto \frac{f(x + \frac{1}{n}) - f(x)}{1/n}$.