The goal of this problem is to give a proof of the following density result.

Theorem (Weierstrass). *Every continuous function on a segment of the real line is the uniform limit of a sequence of polynomial functions.*

0. The theorem asserts in particular that the family of functions \(\{ x \mapsto x^n \}_{n \in \mathbb{N}} \) is a topological basis of \((C([0,1]), \| \cdot \|_{\infty})\). Is it an algebraic basis?

No: linear combinations of monomials are smooth while some continuous functions fail to be differentiable.

Let \(\mathcal{E} \) be the space of continuous and compactly supported complex-valued functions on \(\mathbb{R} \). For \(f, g \in \mathcal{E} \), let \(f \ast g \) denote the *convolution product of \(f \) and \(g \), defined by*

\[
f \ast g(x) = \int_{\mathbb{R}} f(t)g(x-t) \, dt.
\]

1. Verify that \((\mathcal{E}, +, \ast)\) is an algebra. Is it unital?

The verification is routine, using Fubini and changes of variables. Note that \(\text{supp}(f \ast g) \subset \text{supp}(f) + \text{supp}(g) \). Assume that \((\mathcal{E}, +, \ast)\) is unital. Then, there exists a continuous function \(f \) such that \(f \ast g = g \) for all \(g \in \mathcal{E} \). In particular, the relation \(f \ast g(0) = g(0) \) implies that \(\int_{\mathbb{R}} f(t)h(t) \, dt = h(0) \) for any \(h \in \mathcal{E} \). Since \(f \) cannot be identically zero, assume that it takes a positive value at \(x_0 \neq 0 \). Then there exists \(\delta > 0 \) such that \(0 < x_0 - \delta \) and \(f \) only takes positive values on \(I = [x_0 - \delta, x_0 + \delta] \). Consider \(h \) supported in \(I \), non-negative and not identically zero. Then \(h(0) = 0 \neq \int_{\mathbb{R}} f(t)h(t) \, dt \), which contradicts the assumption on \(f \). Therefore \(f \) must vanish everywhere except perhaps at 0, but since it must be continuous, it is constantly zero.
Definition. An approximate unit in \mathcal{E} is a sequence $\{\chi_n\}_{n \geq 1}$ such that for any f in \mathcal{E}, the sequence $\{\chi_n \ast f\}$ converges uniformly to f.

2. Prove that a sequence of non-negative functions α_n in \mathcal{E} such that

$$\forall n \geq 1 \ , \ \int \alpha_n(t) \, dt = 1 \quad \text{and} \quad \forall A > 0 \ , \ \lim_{n \to \infty} \int_{|t| \geq A} \alpha_n(t) \, dt = 0$$

is an approximate unit.

Let $f \in \mathcal{E}$. Since f is continuous and compactly supported, it is uniformly continuous. Fix $\varepsilon > 0$ and let $\eta > 0$ be such that $|x - y| < \eta \Rightarrow |f(x) - f(y)| < \varepsilon$.

Then, if n is large enough so that $\int_{|t| \geq \eta} \alpha_n(t) \, dt < \varepsilon$,

$$|f \ast \alpha_n(x) - f(x)| = \left| \int_{\mathbb{R}} (f(x - t) - f(x)) \alpha_n(t) \, dt \right| \leq \int_{|t| > \eta} |f(x - t) - f(x)| \alpha_n(t) \, dt + \int_{-\eta}^{\eta} |f(x - t) - f(x)| \alpha_n(t) \, dt$$

$$< 2\|f\|_\infty \varepsilon + \varepsilon \int_{\mathbb{R}} \alpha_n(t) \, dt = (2\|f\|_\infty + 1)\varepsilon,$$

which can be made arbitrarily small, independently of x.

3. Define, for $n \geq 1$, $a_n = \int_{-1}^{1} (1 - t^2)^n \, dt$ and $p_n : t \mapsto \begin{cases} \frac{(1 - t^2)^n}{a_n} & \text{if } |t| \leq 1 \\ 0 & \text{otherwise} \end{cases}$

Show that $\{p_n\}_{n \geq 1}$ is an approximate unit in \mathcal{E}.

The non-negativity and normalization are immediate. Note that $\int_{|t| \geq A} p_n(t) \, dt = 0$ if $A \geq 1$ and that

$$a_n = 2 \int_{0}^{1} (1 - t^2)^n \, dt \geq 2 \int_{0}^{1} (1 - t)^n \, dt = \frac{2}{n + 1}.$$

For $0 < A < 1$ and $n \geq 1$, we see that

$$\int_{|t| \geq A} p_n(t) \, dt = \frac{2}{a_n} \int_{A}^{1} (1 - t^2)^n \, dt$$

$$\leq \frac{2}{a_n} (1 - A^2)^n$$

$$= (n + 1)(1 - A^2)^n \xrightarrow{n \to \infty} 0$$

so $\{p_n\}_{n \geq 1}$ is an approximate unit in \mathcal{E}.
4. Let f be a function in \mathcal{E} that vanishes outside of $[-\frac{1}{2}, \frac{1}{2}]$. Prove that, for every $n \geq 1$, the function $p_n \ast f$ is polynomial on its support.

First observe that $p_n(x - t)$ is a polynomial in x. To fix notations, we write

$$p_n(x - t) = \sum_{k=0}^{2n} c_k(t)x^k.$$

Then, for x in the support of the convolution,

$$(f \ast p_n)(x) = \sum_{k=0}^{2n} \left(\int_{-\frac{1}{2}}^{\frac{1}{2}} f(t)c_k(t) \, dt \right)x^k$$

which is a polynomial expression.

5. **Prove Weierstrass’ Theorem.**

It follows from the previous results that a continuous function with compact support in $[-\frac{1}{2}, \frac{1}{2}]$ is a uniform limit of polynomial functions. Now let f be a continuous function defined on a segment $[a,b]$. Extend f to a function $\tilde{f} \in \mathcal{E}$. This can be done for instance by requesting that \tilde{f} be 0 outside of $[a - 1, b + 1]$, coincide with f on $[a,b]$ and affine elsewhere.

An affine transformation from $[a - 1, b + 1]$ to $[-\frac{1}{2}, \frac{1}{2}]$ allows to use the result proved in 4. and to conclude.