Problem 1 (Gram-Schmidt orthonormalization). Let $\mathcal{X} = \{x_n\}_{n \geq 0}$ be a countable family of linearly independent vectors in a Hilbert space. Prove the existence of a countable orthonormal family $\mathcal{Y} = \{y_n\}_{n \geq 0}$ such that

$$\text{Span}(x_0, \ldots, x_p) = \text{Span}(y_0, \ldots, y_p)$$

for all $p \geq 0$.

Problem 2 (Orthogonal polynomials). Let I be an interval of \mathbb{R} and $w : I \to \mathbb{R}$ a continuous positive function such that $x \mapsto x^n w(x)$ is integrable on I for any integer $n \geq 0$. Denote by C the set of continuous functions $f : I \to \mathbb{R}$ such that $x \mapsto f^2(x) w(x)$ is integrable. Finally, for f and g real-valued functions on I, we define

$$\langle f, g \rangle_w = \int_I f(x) g(x) w(x) \, dx$$

1. Verify that $\mathbb{R}[X] \subset C$ and that $\langle \cdot, \cdot \rangle_w$ is an inner product on C. Denote by $\| \cdot \|_w$ the corresponding norm. Is $(C, \| \cdot \|_w)$ a Hilbert space?

2. Prove the existence of an orthonormal basis $\{P_n\}_{n \geq 0}$ of $\mathbb{R}[X]$ such that the degree of P_n is n and its leading coefficient γ_n is positive.

3. Verify that the polynomials P_n satisfy a relation of the form

$$P_n = (a_n X + b_n)P_{n-1} + c_n P_{n-2}$$

and determine the sequences $\{a_n\}_{n \in \mathbb{N}}$, $\{b_n\}_{n \in \mathbb{N}}$ and $\{c_n\}_{n \in \mathbb{N}}$.

4. Prove that P_n has n distinct roots in I.
5. Assume \(I \) compact.
 (a) Find a constant \(C \) such that \(\|f\|_w \leq C\|f\|_\infty \) for all \(f \in \mathcal{C} \).
 (b) For \(f \) in \(\mathcal{C} \), let \(p_n(f) \) be the orthogonal projection of \(f \) on \(\mathbb{R}_n[X] \). Prove that \(p_n(f) \xrightarrow{n \to \infty} f \).

Hint: 1. You may choose a concrete \(w \) to study completeness. 2. Project \((\dagger)\) and express \(a_n \) in terms of \(\gamma_n \) and \(\gamma_{n-1} \). 4. Compute \(\langle P_n, \prod_\alpha (X - \alpha) \rangle_w \) where the product is taken over roots of \(P_n \) with odd order.

Problem 3. Let \(G \) be a group acting on a countable set \(X \). Let \(\mathcal{H} = l^2(X) \) be the Hilbert space of square-integrable functions on \(X \) for the counting measure.

1. Let \(A \) and \(B \) be subsets of \(X \), with indicators denoted by \(\chi_A \) and \(\chi_B \).
 (a) Give a condition on \(A \), equivalent to \(\chi_A \in \mathcal{H} \).
 (b) Give a condition on \(A \) and \(B \), equivalent to \(\chi_A \perp \chi_B \) in \(\mathcal{H} \).

2. For \(f \in \mathcal{H} \) and \(g \in G \), define \(\pi(g)f = x \mapsto f(g^{-1} \cdot x) \).
 (a) Prove that each \(\pi(g) \) is a unitary operator on \(\mathcal{H} \).
 (b) Prove that \(\pi : G \rightarrow U(\mathcal{H}) \) is a group homomorphism.

From now on, we assume that for every \(x \in X \), the \(G \)-orbit \(\{g \cdot x \mid g \in G\} \) is infinite.

3. Let \(A \subset X \) be such that \(\chi_A \in \mathcal{H} \) and denote by \(\mathcal{C} \) be the closure of the convex hull\(^1\) of \(\mathcal{C}_0 = \{\pi(g)\chi_A \mid g \in G\} \).
 (a) Prove the existence of a unique element \(\xi \) of minimal norm in \(\mathcal{C} \).
 (b) Verify that \(\mathcal{C} \) is stable by each of the operators \(\pi(g) \).
 (c) Prove that \(\pi(g)\xi = \xi \) for all \(g \in G \).
 (d) Deduce that \(\xi \) is constant on each \(G \)-orbit and conclude.

4. Let \(A, B \) be non-empty finite subsets of \(X \) and assume that \((g \cdot A) \cap B \neq \emptyset \) for all \(g \) in \(G \).
 (a) Prove that \(\langle f, \chi_B \rangle \geq 1 \) for all \(f \in \mathcal{C} \).
 (b) Apply the previous result to \(\xi \) and conclude.

\(^1\)the convex hull of a set \(S \) is the family of all possible convex combinations of elements of \(S \).