Problem 1 (Pointwise and uniform convergence). Let $f : \mathbb{R} \rightarrow \mathbb{C}$ be a 2π-periodic function, piecewise continuous, piecewise of class C^1. For $x_0 \in \mathbb{R}$, we denote by $f(x_0^\pm)$ the one-sided limit $\lim_{x \rightarrow x_0^\pm} f(x)$ and \tilde{f} is the function defined on \mathbb{R} by

$$\tilde{f}(x) = \frac{f(x^+) + f(x^-)}{2}.$$

The purpose of the problem is to establish the pointwise convergence of the Fourier series of f to \tilde{f}, that is, for any $x_0 \in \mathbb{R}$,

$$\sum_{n \in \mathbb{Z}} \hat{f}(n) e^{inx_0} = \tilde{f}(x_0).$$

1. Verify that for any $x_0 \in \mathbb{R}$, the map $h \mapsto \frac{f(x_0 + h) + f(x_0 - h) - f(x_0^+) - f(x_0^-)}{h}$ is bounded near 0.

First, we consider the case $x_0 = 0$. Denote by $S_N(f)(0)$ the partial sum $\sum_{n=-N}^{N} \hat{f}(n)$.

2. Prove that

$$2\pi S_N(f)(0) = \int_{0}^{\pi} (f(x) + f(-x)) D_N(x) \, dx,$$

where $D_N(x)$ is the Dirichlet kernel $\frac{\sin(N + \frac{1}{2})x}{\sin \frac{x}{2}}$.

3. Show that $2\pi (S_N(f)(0) - \tilde{f}(0))$ can be written as $\int_{0}^{\pi} g(x) \sin \left(N + \frac{1}{2} \right) x \, dx$ with g piecewise continuous and bounded near 0.
4. Conclude and extend to the case of arbitrary x_0.

From now on, we assume f continuous and piecewise of class C^1. We denote by φ the function defined on \mathbb{R} by

$$\varphi(x) = \begin{cases}
 f'(x) & \text{if } f \text{ is differentiable at } x, \\
 \frac{f'(x^+) + f'(x^-)}{2} & \text{otherwise}.
\end{cases}$$

5. Verify the relation $\hat{\varphi}(n) = in \hat{f}(n)$ for all $n \in \mathbb{Z}$.

6. Prove that the Fourier series of f converges normally to f.

Hints: 4. Riemann-Lebesgue. Consider $f_{x_0} : x \mapsto f(x + x_0)$. 6. $|ab| \leq \frac{1}{2}(a^2 + b^2)$.

Problem 2 (Application to the computation of sums). Let f be the 2π-periodic function on \mathbb{R} defined by $f(x) = 1 - \frac{x^2}{\pi^2}$ for all $x \in [-\pi, \pi]$.

1. Compute the Fourier coefficients of f.

2. Deduce the sums of the series $\sum_{n \geq 1} \frac{1}{n^2}$, $\sum_{n \geq 1} \frac{(-1)^n}{n^2}$ and $\sum_{n \geq 1} \frac{1}{n^4}$.

Hints: note that only the real part of $\hat{f}(n)$ is useful. Parseval.

Problem 3 (Not every function is equal to the sum of its Fourier series). Let $C_{2\pi}$ denote the space of 2π-periodic continuous functions on \mathbb{R}, equipped with $\| \cdot \|_\infty$.

For $N \in \mathbb{N}$, we define a linear functional φ_N on $C_{2\pi}$ by

$$\varphi_N(f) = S_N(f)(0) = \sum_{n=-N}^{N} \hat{f}(n).$$

1. Verify that $C_{2\pi}$ is a Banach space.

2. Prove that $\varphi_N \in C_{2\pi}^*$ and compute $\|\varphi_N\|$.

3. Show that $\|\varphi_N\| \geq \frac{2}{\pi} \int_0^{(2N+1)\pi} \left| \frac{\sin u}{u} \right| du$ for any $N \in \mathbb{N}$.

4. Prove the existence of a function in $C_{2\pi}$ whose Fourier series diverges at 0.

Hints: 2. Consider $f_\varepsilon = \frac{D_N}{|D_N| + \varepsilon}$. 4. Use the Principle of Uniform Boundedness.