
FOURIER SERIES

MATH 113 - SPRING 2015

PROBLEM SET #8

Problem 1 (Pointwise and uniform convergence). Let f : R −→ C be a 2π-
periodic function, piecewise continuous, piecewise of class C1. For x0 ∈ R, we
denote by f(x±0 ) the one-sided limit lim

x→x±0
f(x) and f̃ is the function defined on R

by

f̃(x) =
f(x+) + f(x−)

2
.

The purpose of the problem is to establish the pointwise convergence of the Fourier
series of f to f̃ , that is, for any x0 ∈ R,∑

n∈Z

f̂(n)einx0 = f̃(x0).

1. Verify that for any x0 in R, the map h 7→ f(x0 + h) + f(x0 − h)− f(x+0 )− f(x−0 )
h

is bounded near 0.

First, we consider the case x0 = 0. Denote by SN(f)(0) the partial sum
N∑

n=−N
f̂(n).

2. Prove that

2πSN(f)(0) =

∫ π

0

(f(x) + f(−x))DN(x) dx,

where DN(x) is the Dirichlet kernel
sin(N + 1

2
)x

sin x
2

.

3. Show that 2π(SN(f)(0)−f̃(0)) can be written as
∫ π

0

g(x) sin

(
N +

1

2

)
x dx

with g piecewise continuous and bounded near 0.
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4. Conclude and extend to the case of arbitrary x0.

From now on, we assume f continuous and piecewise of class C1. We denote by
ϕ the function defined on R by

ϕ(x) =


f ′(x) if f is differentiable at x,

f ′(x+) + f ′(x−)

2
otherwise.

5. Verify the relation ϕ̂(n) = in f̂(n) for all n ∈ Z.

6. Prove that the Fourier series of f converges normally to f .

Hints: 4. Riemann-Lebesgue. Consider fx0 : x 7→ f(x+x0). 6. |ab| ≤ 1
2
(a2+b2).

Solution. 1. Boundedness follows from the existence of limits on the the left
and the right for the function and its derivative.

2. Partial sums of Fourier series are given by right convolution with Dirichlet’s
kernel, which is an even function.

3. The function g(x) =
(f(x) + f(−x)− f(0+)− f(0−))

sin
(
x
2

) is bounded near 0

by the hypotheses and the fact that sin(x) ∼0 x.

4. The integral converges to 0 as N →∞ by the Riemann-Lebesgue Lemma.
For the general case, observe that f̂x0(n) = einx0 f̂(n).

5. Integrate by parts on every interval where the function is of class C1.

6. For every n, we have |f̂(n)| =
∣∣∣∣ ϕ̂(n)n

∣∣∣∣ ≤ 1

2

(
|ϕ̂(n)|2 + 1

n2

)
, summable by

Parseval. Therefore, the series converges normally to its pointwise limit f̃ .

Problem 2 (Application to the computation of sums). Let f be the 2π-periodic

function on R defined by f(x) = 1− x2

π2
for all x ∈ [−π, π].

1. Compute the Fourier coefficients of f .
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2. Deduce the sums of the series
∑
n≥1

1

n2
,
∑
n≥1

(−1)n

n2
and

∑
n≥1

1

n4
.

Hints: note that only the real part of f̂(n) is useful. Parseval.

Solution. A direct computation shows that f̂(0) =
2

3
and that the real part of f̂(n)

is
2(−1)n+1

π2n2
. Since f clearly satisfies the hypotheses of the results proved in the

previous problem, we get:

• f(π) = 0 =
2

3
− 2

π2

∑
|n|≥1

1

n2
so that

∑
n≥1

1

n2
=
π2

6
.

• f(0) = 1 =
2

3
− 2

π2

∑
|n|≥1

(−1)n

n2
so that

∑
n≥1

(−1)n

n2
= −π

2

12
.

Finally, Parsevals’ Identity gives
1

2π

∫ π

−π

(
1− x2

π2

)2

dx =
8

15
=

4

9
+

4

π4

∑
|n|≥1

1

n4

so that
∑
n≥1

1

n4
=
π4

90
.

Problem 3 (Not every function is equal to the sum of its Fourier series). Let C2π
denote the space of 2π-periodic continuous functions on R, equipped with ‖ · ‖∞.
For N ∈ N, we define a linear functional ϕN on C2π by

ϕN(f) = SN(f)(0) =
N∑

n=−N

f̂(n)

1. Verify that C2π is a Banach space.

2. Prove that ϕN ∈ C∗2π and compute ‖ϕN‖.

3. Show that ‖ϕN‖ ≥
2

π

∫ (2N+1)π
2

0

∣∣∣∣sinuu
∣∣∣∣ du for any N ∈ N.

4. Prove the existence of a function in C2π whose Fourier series diverges at 0.

Hints: 2. Consider fε = DN
|DN |+ε

. 4. Use the Principle of Uniform Boundedness.
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Solution. 1. The space C2π is a closed subspace of the Banach space of bounded
functions on R.

2. Using the Dirichlet kernel once more, we see thatϕN(f) = 1
2π

∫ π
−π f(x)DN(x) dx

from which it follows that ‖ϕN‖ ≤
1

2π

∫ π

−π
|DN(x)| dx, so that ϕN ∈ C∗2π.

To prove the reverse inequality, consider fε = DN
|DN |+ε

for ε > 0. It is clearly

in the unit ball and lim
ε→0

ϕN(fε) =
1

2π

∫ π

−π
|DN(x)| dx so finally,

‖ϕN‖ =
1

2π

∫ π

−π
|DN(x)| dx.

3. It follows from the inequality
∣∣∣sin(x

2

)∣∣∣ ≤ ∣∣∣x
2

∣∣∣ and the change of variables

u =

(
N +

1

2

)
x

4. The improper integral
∫ ∞
0

∣∣∣∣sinuu
∣∣∣∣ du is divergent so lim

N→∞
‖ϕN‖ = ∞. If

ϕN(f) was convergent for all f ∈ C2π, the Principle of Uniform Bounded-
ness would imply that ‖ϕN‖ is a bounded sequence, so there exist functions
whose Fourier series must diverge at 0.
Note that such functions can be explicitely constructed, see for instance
Chapter 3 in [Stein - Shakarchi].
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