
Here is a simple proof of the existence of lots of continuous nowhere differentiable
functions on the real line. The argument here follows the outline given in Pedersen’s
Analysis Now [1]. In fact, I will prove the following theorem.

Theorem 1. The collection of continuous nowhere differentiable functions is dense in

the Banach space X = C
(

[0, 1]
)

of continuous functions on [0, 1] with the supremum

norm.

The first step is to consider the collection Fn of f ∈ X with the property that
there is a xf ∈ [0, 1] such that

∣

∣f(y)− f(xf )
∣

∣ ≤ n|y − xf | for all y ∈ [0, 1].

Lemma 2. For each n ≥ 1, Fn is closed in X.

Proof. Suppose that { fk } ⊆ Fn and converges to f in X. For notational conve-
nience, I’ll write xk for xfk . Using the compactness of [0, 1], we can, by passing to a
subsequence and relabeling, assume that {xk } converges to x ∈ [0, 1]. Since fk → f
uniformly, { fk(xk) } converges to f(x). Therefore for all y ∈ [0, 1],

∣

∣f(y)− f(x)
∣

∣ = lim
k→∞

∣

∣fk(y)− fk(xk)
∣

∣

≤ n lim
k→∞

|y − xk| = n|y − x|.

That is, f belongs to Fn. �

Lemma 3. If f ∈ X and if f is differentiable at x ∈ [0, 1], then f ∈
⋃∞

n=1
Fn.

Proof. It is straightforward to see that there is a δ > 0 so that |y − x| < δ implies
that

∣

∣f(y)− f(x)
∣

∣ ≤
(∣

∣f ′(x)
∣

∣+ 1
)

|y − x|.

Thus f is in Fn for any n ≥ max
{

2δ−1‖f‖∞,
∣

∣f ′(x)
∣

∣+ 1
}

. �

In the sequel, it will be important to remember that a continuous, piecewise linear
function always has one-sided derivatives at every point. I’ll use the notation

D+f(x) = lim
h→0+

f(x+ h)− f(x)

h
and D−f(x) = lim

h→0−

f(x+ h)− f(x)

h
.

If
∣

∣D+f(x)
∣

∣ ≥ n and
∣

∣D−f(x)
∣

∣ ≥ n for all x ∈ [0, 1], then I’ll write f ∈ PWn.
Thus PWn is the collection of continuous, piecewise linear functions whose one-sided
derivatives are always numerically larger than n. It will also be handy to let φ be
the continuous function on R of period one determined by

φ(x) =

{

2x if 0 ≤ x ≤ 1

2
and

2− 2x if 1

2
≤ x ≤ 1.

Finally let φn(x) = 2−nφ(4nx), and notice that φn is in PW2n and satisfies ‖φn‖∞ ≤
2−n. Now we can make our final observation.
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Lemma 4. If f ∈ X, ǫ > 0, and N ∈ Z
+, then there is a g ∈ PWN such that

‖f − g‖∞ < ǫ.

Proof. Since f is uniformly continuous, there is a m ∈ Z
+ such that |x − y| < 1/m

implies that
∣

∣f(x)− f(y)
∣

∣ < ǫ/2. Let xi = i/m for i = 0, 1, . . . ,m, and define

g0
(

λxi + (1− λ)xi+1

)

= lf(xi) + (1− λ)f(xi+1)

for i = 0, 1, . . . ,m − 1 and 0 ≤ λ ≤ 1. Then g0 is a continuous, piecewise linear
function on [0, 1] which satisfies ‖f − g0‖∞ < ǫ/2. Let M = max0≤i≤m−1 m

∣

∣f(xi+1)−

f(xi)
∣

∣. Then
∣

∣D+g0(x)
∣

∣ ≤ M for all x ∈ [0, 1] (and similarly for
∣

∣D−g0(x)
∣

∣). Thus if

we take k such that 2k ≥ M + N and 2−k < ǫ/2, then g = g0 + φk will satisfy the
requirements of the lemma. �

Proof of Theorem 1. Lemmas 2 and 4 imply that each Fn is closed with empty inte-
rior in X. Therefore each On = F c

n is open and dense. The Baire Category Theorem
then implies that

(

∞
⋃

n=1

Fn

)c

=
∞
⋂

n=1

On

is dense in X. The theorem now follows from Lemma 4. �

Remark 5. We’ve actually shown that the collection of nowhere differentiable func-
tions are a bit more than dense in C

(

[0, 1]
)

. In a complete metric space X, the
countable intersection of dense open sets must be of “second category;” in particular,
such a set must be uncountable if X is.
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