
LECTURE NOTES ON THE SPECTRAL THEOREM

DANA P. WILLIAMS

Abstract. Sections 1 through 5 of these notes are from a series of lectures
I gave in the summer of 1989. The object of these lectures was to give a

reasonably self-contained proof of the Spectral Theorem for bounded normal

operators on an infinite dimensional complex Hilbert space. They are aimed
at second year graduate students who have at least had a bit of functional

analysis. Since the talks, and in particular these notes, were meant to be
informal, I did not take the time to carefully footnote the sources for the

arguments which I stole from the standard texts. On can safely assume that

the clever bits may be found—word for word—in either [8, Chapters 10–13]
and/or [1, §1.1].

I added Section 6 since I was curious about non normal operators and

what can be said about them. Section 7 was added in 2006 based on a series
of talks in our functional analysis seminar. Section 6 comes from [8, §§10.21–

33]. Section 7 is based on some old lecture notes from a course I took from my

advisor, Marc Rieffel, in 1978 and [8, Chap. 13].
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1. Notation, Assumptions and General Introduction

First let’s establish some notation and establish some ground rules.

• Life takes place in complex Hilbert space. (Usually calledH.) Consequently,
the only scalar field I’ll be using will be the complex numbers, C.

• A linear operator T : H → H is said to be bounded if

‖T‖ = sup
|ξ|≤1

‖Tξ‖ <∞.

• If H is finite dimensional, then all linear operators are bounded. To see
this, note that every operator is given by matrix multiplication; therefore,
T is continuous from H to H. Now you can either prove that (in general)
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a linear operator T : H → H is continuous if and only if it is bounded, or
you can note that { ξ ∈ Cn : |ξ| ≤ 1 } is compact.

• Every bounded operator T has an adjoint T ∗ such that (Tξ, η) = (ξ, T ∗η)
for all ξ, η ∈ H. (For fixed η, ξ 7→ (Tξ, η) is a bounded linear functional;
hence, there exists T ∗η ∈ H so that (Tξ, η) = (ξ, T ∗η).) One can show that
T ∗ is a bounded linear operator with ‖T ∗‖ = ‖T‖. IfH is finite dimensional,
then the matrix of T ∗ is the conjugate transpose of that of T .

• An operator is called normal if T ∗T = TT ∗. Of course, an operator is
called self-adjoint if T = T ∗. Finally, T is called positive if (Tξ, ξ) ≥ 0 for
all ξ ∈ H. A positive operator is self-adjoint, and a self-adjoint operator is
normal.

• As operators on C2,
(

0 0
1 0

)
is not normal,

(
1 1
−1 1

)
is normal but not self-

adjoint,
(

1 2
2 2

)
is self-adjoint but not positive. The operator

(
3 −2
−2 2

)
is

positive.
• If T ∈ B(H), then the spectrum of T is

σ(T ) = {λ ∈ C : λI − T is not invertible }.

Example 1.1. Let X be a non-empty compact subset of C, and µ a finite measure
on X with full support (i.e., µ(V ) > 0 for every nonempty open set V ⊆ X). Let
H = L2(X,µ). For each f ∈ C(X) define Mf by

Mfξ(x) = f(x)ξ(x).

(A) Then Mf ∈ B(H), ‖Mf‖ = ‖f‖∞, M∗f = Mf̄ , and σ(Mf ) = f(X).

(B) Note that MgMf = Mgf . Consequently, Mf is normal. Of course, Mf will be
self-adjoint if f(X) ⊆ R, and positive if f(X) ⊆ [0,∞).

(C) Note that if µ is continuous (i.e., µ
(
{x }

)
= 0 for all x ∈ X) and if f(x) = x

for all x ∈ X, then Mf has no eigenvalues!

I’ve included the next example more for reference than anything else. It shouldn’t
be taken too seriously on a first read through and I certainly won’t use it elsewhere.

Example 1.2 (Ultimate Example). Now let X be a compact subset of C, and sup-
pose that X =

⋃n=∞
n=1 Xn is a Borel partition of X. Let

Hn = L2(Xn, µn)⊗Cn ∼= L2(Xn, µn,C
n) (n = 1, 2, . . . ,∞).

(Here C∞ denotes `2 or your favorite infinite dimensional separable Hilbert space).

Then H̃ =
n=∞⊕
n=1
Hn is a Hilbert space and Mf is defined in the obvious way for

f ∈ C(X). Assertions (A), (B), and (C) are still valid.

The punch line is that every normal operator on a separable Hilbert space is
unitarily equivalent to such a Mf . (In fact, one can take X = σ(T ) and f(λ) = λ).

That is, there is a Hilbert space isomorphism U : H → H̃ so that

T = U∗MfU

This is a pretty, but not particularly useful, abstract version of the spectral theorem.
To motivate what follows, let’s review the spectral theorem for H finite dimen-

sional.

Lemma 1.3. Suppose that H is finite dimensional. If T ∈ B(H), then σ(T ) 6= ∅.
Furthermore, λ ∈ σ(T ) if and only if λ is an eigenvalue for T .
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Lemma 1.4. If T ∈ B(H) is normal, and if v is a eigenvector for T with eigenvalue
λ, then v is a eigenvector for T ∗ with eigenvalue λ̄.

Proof. Let Eλ = { v ∈ H : Tv = λv }. Since TT ∗v = T ∗Tv = λT ∗v, we have
T ∗v ∈ Eλ. If w ∈ Eλ, then

(T ∗v − λ̄v, w) = (T ∗v, w)− λ̄(v, w)

= (v, Tw)− λ̄(v, w)

= 0.

Since T ∗v − λ̄v ∈ Eλ, we have T ∗v = λ̄v. �

Proposition 1.5. Suppose that H is finite dimensional. If T ∈ B(H) is normal,
then H has a basis of eigenvectors for T .

Proof. By Lemmas 1.3 and 1.4, there is a v ∈ H, which is an eigenvector for both
T and T ∗. Let W = {v}⊥. Then W is invariant under T ∗ and T . It follows that
T |W = S is a normal operator on B(W ). The result follows by induction. �

In most undergraduate texts, Proposition 1.5 is called the Principal Axes Theo-
rem. It needs to be dressed up a little before it can enjoy being called the Spectral
Theorem. Now, still in the finite dimensional case, let σ(T ) = {λ1, . . . , λn}. Let
En = Eλn and Pn the orthogonal projection onto En. Standard nonsense implies
that PnPm = 0 if n 6= m. Moreover, by Proposition 1.5

(1.1) T = λ1P1 + · · ·+ λnPn.

Define Ψ : C
(
σ(T )

)
→ B(H) by

(1.2) Ψ(f) = f(λ1)P1 + · · ·+ f(λn)Pn.

Note that if p is a polynomial, then Ψ(p) = p(T ) where the latter has the obvious
meaning. Thus, one often writes f(T ) for general f .

It is not hard to see that Ψ is a isometric ∗-isomorphism into its range: i.e.,

(a) ‖Ψ(f)‖ = ‖f‖∞
(b) Ψ(f + g) = Ψ(f) + Ψ(g)

(c) Ψ(fg) = Ψ(f)Ψ(g)

(d) Ψ(f̄) = Ψ(f)∗

(Note that (c) is obvious for polynomials, and every f ∈ C
(
σ(T )

)
is the restriction

of a polynomial to σ(T )). The existence of this isomorphism can be very useful;
the process of passing from f ∈ C(σ(T )) to f(T ) is called the functional calcu-
lus. It allows us to construct, for example, square roots, logs, and exponentials of
operators. In fact, the functional calculus can be used to construct a great many
interesting operators. For this reason, the decomposition of (1.1) is usually called
the Spectral Theorem in finite dimensions.

Although, one can generalize (1.2) directly (and we will), the notation used is,
unfortunately, often a different one. We introduce it here, so that it won’t seem so
strange latter.
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1.1. Alternate Notation. For each A ⊆ σ(T ), let

P (A) =
∑
λi∈A

Pi.

The map P : P
(
σ(T )

)
→ B(H) is a special case of what we will call a “H-projection

valued measure” on σ(T ). (Notice that if v, w ∈ H, then µv,w(A) =
(
P (A)v, w

)
is

a bonafide measure on σ(T )
)
. When using this approach, one writes∫

σ(T )

f(λ) dP (λ) in place of Ψ(f)

This notation is (marginally) justified by the fact that(
Ψ(f)v, w

)
=
( ∫
σ(T )

f dPv,w
)

=

∫
σ(T )

f dµv,w.

In general, the classical Spectral Theorem says that each normal T ∈ B(H) is
associated to a (unique) H-projection valued measure on σ(T ), which we will define
later, so that

T =

∫
σ(T )

λ dP (λ).

Furthermore, λ ∈ σ(T ) is an eigenvalue for T if and only if P ({λ}) 6= 0. In the
Example 1.2 on page 2, one defines

P (E) = MχE

for each measurable set E ⊆ X. Again, one can check that if ξ, η ∈ H̃, then
µξ,η(E) =

(
P (E)ξ, η

)
=
∫
E
ξ(λ)η(λ) dµ(λ) is an honest measure and

(Mfξ, η) =

∫
f(λ) dµξ,η(λ).

2. The spectrum

Definition 2.1. A Banach algebra is a complex Banach space which is an algebra
in such a way that ‖xy‖ ≤ ‖x‖‖y‖. Our algebras will always be assumed to have an
identity e.

Example 2.2. Let A = B(H). Then, if T, S ∈ A, it is easy to see that ‖ST‖ ≤
‖S‖‖T‖, and that A is a Banach algebra.

Definition 2.3. If A is a Banach algebra, then let G(A) denote the group of
invertible elements.

It is a standard exercise to show that if A is a Banach algebra and x ∈ A with
‖x‖ < 1, then e− x ∈ G(A). In fact, (e− x)−1 = e+ x+ x2 + · · · .

Lemma 2.4. G(A) is open.

Proof. Suppose x ∈ G(A). Then x + h = x(e + x−1h), and (e + x−1h) ∈ G(A) if
‖h‖ < ‖x−1‖−1. �
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Definition 2.5. Let A be a Banach algebra with unit e. If x ∈ A, then the spectrum
of x is

σ(x) = {λ ∈ C : λe− x 6∈ G(A)}
and the spectral radius of x is

ρ(x) = sup{ |λ| ∈ C : λ ∈ σ(x) }.
Theorem 2.6. If A is a Banach algebra with unit e, then for each x ∈ A,

(a) (Gelfand) σ(x) is compact and nonempty, and

(b) (Beurling) ρ(x) = limn→∞ ‖xn‖
1
n = infn≥1 ‖xn‖

1
n .

Remark 2.7. The existence of the limit is part of the conclusion as is the fact that
ρ(x) ≤ ‖x‖.
Proof. If |λ| > ‖x‖, then λe− x = λ(e− λ−1x) ∈ G(A). Therefore, ρ(x) ≤ ‖x‖; in
particular σ(x) is bounded.

Define g : C→ A by g(λ) = λe− x. Then g is continuous. Thus,

Ω = {λ ∈ C : λ 6∈ σ(x) } = g−1(G(A))

is open. Therefore, σ(x) is closed. (Hence, compact!). Note that if x = 0, then
σ(x) = {0} and we’re done. So we can assume x 6= 0 in the sequel.

Now define f : Ω→ G(A) by f(λ) = (λe−x)−1. (One often writes f(λ) = R(x, λ)
and refers to f(λ) as the resolvent of x at λ).

Now consider

lim
h→0

1

h
(f(λ+ h)− f(λ)) = lim

h→0

1

h
((λe− x+ he)−1 − (λe− x)−1)

= lim
h→0

1

h

(
(e+ f(λ)h)−1 − e

)
f(λ),

Now if h is so small that ‖f(λ)h‖ < 1, then

= lim
h→0

1

h

( ∞∑
n=1

(
− f(λ)h

)n)
f(λ) = −f(λ)2.

In plain terms, λ 7→ f(λ) is a strongly holomorphic A-valued function on Ω.1

Now if λ > ‖x‖, then

f(λ) = (λe− x)−1 = λ−1
(
e− x

λ

)−1

=
1

λ

∞∑
n=0

(x
λ

)n
=

1

λ
e+

1

λ2
x+ · · · .

And the convergence is uniform on circles Γr centered at 0 provided r > ‖x‖.
Since

∫
Γr

λn dλ is 2πi if n is −1 and 0 otherwise, we get:2

1Alternatively, λ 7→ Λ(f(λ)) is (honestly) holomorphic on Ω for every Λ ∈ A∗.
2Again, one may apply a Λ ∈ A∗ to both sides so that

Λ(xn) =
1

2πi

∫
Γr

λnΛ(f(λ)) dλ

for all Λ ∈ A∗.
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(2.1) xn =
1

2πi

∫
Γr

λnf(λ) dλ n = 0, 1, 2, . . .

Since |λ| > ρ(x) implies that λ ∈ Ω, it follows that if r, r′ > ρ(x), then Γr and
Γr′ are homotopic in Ω! Thus, Equation 2.1 holds for all r > ρ(x).

Now if Ω = C, then f is entire and bounded (since |λ| > 2‖x‖ implies that
‖f(λ)‖ ≤ 1

|λ|
1

1− ‖x‖λ
≤ 1

2‖x‖
1

1− 1
2

= 1
‖x‖ ). Therefore, f would be constant. It would

then follow from Equation 2.1, with n = 0, that e = 0; this is a contradiction, so
σ(x) 6= ∅. We’ve proved (a).

Now let M(r) = max
λ∈Γr

‖f(λ)‖. Using Equation 2.1,

‖xn‖ ≤ rn+1M(r).

Thus,

lim sup
n
‖xn‖ 1

n ≤ r.

It follows that

lim sup
n
‖xn‖ 1

n ≤ ρ(x).

Now, if λ ∈ σ(x), then

(λne− xn) = (λe− x)(λn−1e+ λn−2x+ · · ·+ xn−1)

= (λn−1e+ λn−2x+ · · ·+ xn−1)(λe− x)

implies that λn ∈ σ(xn)—otherwise, (λn−1e+ · · ·+xn−1)(λne−xn)−1 is an inverse
for (λe − x). As a consequence, if λ ∈ σ(x), then |λn| ≤ ρ(xn) ≤ ‖xn‖. In

particular, |λ| ≤ ‖xn‖ 1
n . Therefore, ρ(x) ≤ infn≥1 ‖xn‖

1
n . Combining with the

previous paragraph,

lim sup
n
‖xn‖ 1

n ≤ ρ(x) ≤ inf
n≥1
‖xn‖ 1

n ≤ lim inf
n
‖xn‖ 1

n .

This completes the proof. �

Corollary 2.8 (Gelfand-Mazur). A unital Banach algebra in which every non-zero
element is invertible is isometrically isomorphic to C.

Proof. If λ 6= µ, then at most one of λe − x and µe − x can be zero for any
x ∈ A. Thus, σ(x) consists of a single number—say σ(x) = {λ(x) }. By assumption
λ(x)e− x = 0. One can prove that λ : A→ C is the required map3. �

3For example,

λ(x)λ(y)e− xy = λ(x)λ(y)e− λ(x)y + λ(x)y − xy
= λ(x)(λ(y)e− y) + (λ(x)− x)y = 0.

Thus, λ(xy) = λ(x)λ(y).
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3. The Gelfand transform

Recall that J $ A is called a maximal ideal if J is a proper ideal which is
contained in no larger proper ideal. Since G(A) is open and any proper ideal
satisfies J ∩G(A) = ∅, it follows that maximal ideals are closed – given any proper
ideal, its closure is an ideal disjoint from G(A) and hence proper. A linear functional
h : A→ C which is also multiplicative is called a complex homomorphism.

Theorem 3.1. Let A be a unital commutative Banach algebra. Let ∆ denote the
collection of nonzero complex homomorphisms.

(1) J is a maximal ideal in A if and only if J is the kernel of some h ∈ ∆.
(2) ‖h‖ = 1 for all h ∈ ∆.
(3) λ ∈ σ(x) if and only if h(x) = λ for some h ∈ ∆.

Proof. Let J be a maximal ideal in A. Since J is closed, the natural map π : A→
A/J has norm 1.4 If x ∈ A is such that π(x) 6= 0 — so that x 6∈ J — then let

M = { ax+ y : a ∈ A and y ∈ J }.
Then M is an ideal in A such that J $ M . Therefore, M = A; in particular, for
some a ∈ A and y ∈ J ,

ax+ y = e.

Hence, π(a)π(x) = π(e). Thus, π(x) is invertible. It follows from Corollary 2.8 that
A/J is isomorphic to C, and that π defines a complex homomorphism with kernel
J . This establishes the first part of part (1).

On the other hand, if h ∈ ∆, then we must show that h−1(0) is a maximal ideal.
However, if J ⊇ h−1(0), and if there is a x ∈ J with h(x) 6= 0, then, given y ∈ A,
we have y − h(y)h(x)−1x ∈ h−1(0) ⊆ J . It follows that y ∈ J , and that J = A.
This proves (1).

Part (2) follows from (1) and the fact that quotient maps have norm 1.
To prove (3), first notice that x ∈ G(A) implies h(x)h(x−1) = h(e) = 1 for all

h ∈ ∆. Thus, x ∈ G(A) implies that h(x) 6= 0 for all h ∈ ∆. On the other hand,
if x 6∈ G(A), then J = { ax : a ∈ A } is a proper ideal. Since J is contained in a
maximal ideal, J ⊆ kerh for some h ∈ ∆ by part (1). Thus, x ∈ G(A) if and only
if h(x) 6= 0 for all h ∈ ∆. The result follows by replacing x by λe− x above. �

Definition 3.2. Let A be a unital commutative Banach algebra and ∆ the col-
lection of nonzero complex homomorphisms of A. For each x ∈ A, the Gelfand
transform of x is the function x̂ : ∆ → C defined by x̂(h) = h(x). The Gelfand
topology on ∆ is the smallest topology for which each x̂ is continuous. The set
∆ = ∆(A) equipped with the Gelfand topology is called the maximal ideal space of
A, or the spectrum of A.

We need a brief digression into “point-set topology”.

Definition 3.3. Let X be a set, Y be a topological space and F a collection of
functions f : X → Y . Then the initial topology on X is the smallest topology such
that each f ∈ F is continuous.

A subbasis for the initial topology on X is given by

ρ = { f−1(U) : U ⊂ Y is open and f ∈ F }.
4We need J closed so that A/J is a normed space—a Banach algebra in fact—‖π(x)‖ =

infy∈J ‖x+ y‖.
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Example 3.4. The weak-∗ topology on X = A∗ is the initial topology for F := { a ∈
A } where each a ∈ A is viewed a complex-valued function (ϕ 7→ ϕ(a)) on A∗.

Lemma 3.5. Suppose that X has the initial topology corresponding to F ⊂ XY for
some space Y . If S ⊂ X, then the relative topology on S is the initial topology for
F|S := { f |S : f ∈ F }.

Proof. f |S−1
(U) = f−1(U) ∩ S. �

Theorem 3.6. Let A be a unital commutative Banach algebra with maximal ideal
space ∆. Then ∆ is a compact Hausdorff space (with the Gelfand topology), and
the Gelfand transform is a homomorphism of A into C(∆) with kernel

rad(A) =
⋂
{ J : J is a maximal ideal in A }.

Moreover, ‖x̂‖∞ = ρ(x).

Remark 3.7. If rad(A) = { 0 }, then A is called semisimple. Consequently, the
Gelfand transform is injective if and only if A is semisimple.

Proof. We have x̂ ∈ C(∆) by definition, and it is straightforward to check that
x 7→ x̂ is an algebraic homomorphism. Since x̂ = 0 if and only if h(x) = 0 for
all h ∈ ∆, the formula for rad(A) follows from part (1) of Theorem 3.1 and, the
formula for ‖x̂‖∞ follows from part (3) of the same theorem. Therefore we only
have to prove that ∆ is compact and Hausdorff.

However, K = {ϕ ∈ A∗ : ‖ϕ‖ ≤ 1 } is weak-∗ compact by the Banach-Alaoglu
theorem,5 and ∆ ⊆ K. It follows from Example 3.4 and Lemma 3.5 that the
Gelfand topology is the restriction of the weak-∗ topology to ∆. We’ll be done once
we see that ∆ is closed in K (since the weak-∗ topology is Hausdorff).

Now let hα be a net converging to ϕ in K. Then hα(x) → ϕ(x) for all x ∈ A.
Thus, ϕ(e) = 1 and ϕ(xy) = lim

α
hα(xy) = ϕ(x)ϕ(y). In short, ϕ ∈ ∆. �

Since we are eventually going to want to concentrate on subalgebras of B(H),
we want to start to pay attention to the fact that operators on Hilbert space have
adjoints. (The adjoint has to play a significant rôle since, even in finite dimensions,
only normal operators have a decent spectral decomposition!) Therefore we make
the following definition.

Definition 3.8. A Banach ∗-algebra is a Banach algebra A together with a map
x 7→ x∗ of A onto itself which satisfies

(a) x∗∗ = x

(b) (xy)∗ = y∗x∗

(c) (x+ λy)∗ = x∗ + λ̄y∗

(d) ‖x∗‖ = ‖x‖
for all x, y ∈ A and λ ∈ C.

Example 3.9. Of course, the motivating example is B(H), or any self-adjoint sub-
algebra of B(H).

5Let Dr = { ζ ∈ C : |ζ| ≤ r }. Then C =
∏
a∈AD‖a‖ is compact by Tychonoff’s Theorem.

Then you check that the map κ : K → C defined by κ(ϕ)(a) = ϕ(a) is a homeomorphism onto a
closed subset of C.
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Example 3.10. Let G be a locally compact abelian group with Haar measure λ.
Then by applying Fubini’s theorem and some standard measure theory we get that
A = L1(G,λ) is a commutative Banach ∗-algebra with multiplication

f ∗ g(s) =

∫
G

f(t)g(s− t) dλ(t),

and involution

f∗(s) = f(−s).
Unfortunately, A is unital if and only if G is discrete. However, it is not hard

to see that if G is not discrete, then

B = C⊕A = { (λ, f) ∈ C×A }

is a unital commutative Banach ∗-algebra when one defines

(1) ‖(λ, f)‖ = |λ|+ ‖f‖1
(2) (λ, f)(µ, g) = (λµ, λg + µf + f ∗ g)

(3) (λ, f)∗ = (λ̄, f∗)

Of course, in order to check the norm inequality in Definition 2.1 you will want to
recall the fact that ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.

Furthermore, if w ∈ Ĝ, then

hw((λ, f)) = λ+

∫
G

f(t)w(t) dt

= λ+ f̂(w)

can be shown to be a complex homomorphism (here Ĝ is the group of unitary char-

acters on G, and f̂ is the Fourier transform). In fact, although this requires some

work, every h ∈ ∆(B) is either of the form hw for some w ∈ Ĝ, or h((λ, f)) = λ.

Remarkably, ∆(B) is the one point compactification of Ĝ (with the dual topol-
ogy from abelian harmonic analysis—the topology of uniform convergence on com-
pacta). The point is that the Fourier transform is a special case of the Gelfand
transform.

4. The Abstract Spectral Theorem

Bounded operators on Hilbert space have one more special property we require:

‖T ∗T‖ = ‖T‖2.

This is the (or at least a) reason for the next definition.

Definition 4.1. A Banach ∗-algebra A is called a C∗-algebra if ‖x∗x‖ = ‖x‖2 for
all x ∈ A.

Example 4.2. Let A be a self-adjoint, norm closed subalgebra of B(H). Then A is
a C∗-algebra. In particular, if T ∈ B(H) is normal—that is, TT ∗ = T ∗T—then the
closure in the norm topology of the algebra generated by I, T , and T ∗ is a unital
commutative C∗-algebra.

It is worth noting that the algebras in Example 3.10 are (almost) never C∗-
algebras.
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Example 4.3. Suppose that X is a compact Hausdorff space. Then A = C(X) is
a unital commutative C∗-algebra with maximal ideal space (homeomorphic to) X.
In particular, every complex homomorphism is of the form hx : A → C, where
hx(f) = f(x).

Proof. A is obviously a Banach ∗-algebra with multiplication defined by fg(x) =

f(x)g(x) and with f∗(x) = f̄(x) = f(x). Moreover, A is a C∗-algebra as

‖f∗f‖∞ = ‖|f |2‖∞ = ‖f‖2∞.

Now suppose that J is a closed ideal in A with the property that given x ∈
X, there is a f ∈ J such that f(x) 6= 0. Then using the compactness of X,
there are f1, f2, . . . , fn ∈ J so that

∑
i |fi|2 does not vanish on X. Then 1 =

(
∑
i |fi|2)−1

∑
i |fi|2 must belong to J . Of course that means J = A. It follows

that every maximal ideal is of the form J = { f ∈ A : f(x) = 0 } for some x ∈ X. In
particular, every h ∈ ∆ is a point evaluation, since h(g) = h(g−g(x) ·1+g(x) ·1) =
h(g − g(x)1) + g(x) · h(1) = g(x) since g − g(x)1 ∈ J . Finally, it is not hard to
see that the map ρ : x 7→ hx is continuous from X to ∆ (∆ has initial topology

induced by x̂, and for all θ ∈ A, θ̂ ◦ ρ = θ is continuous) as well as one-to-one and
onto. Since X is compact and ∆ is Hausdorff, they must be homeomorphic. �

Definition 4.4. If A and B are Banach ∗-algebras then a homomorphism Φ : A→
B is called a ∗-homomorphism if Φ(a∗) = Φ(a)∗ for all a ∈ A.

Remarkably, Example 4.2 “includes” all C∗-algebras in the sense that every C∗-
algebra is isometrically ∗-isomorphic to such an algebra. Unfortunately, we don’t
need this fact, so I can’t justify proving it.6 The Abstract Spectral Theorem is,
however, merely a characterization of (unital) commutative C∗-algebras which says
that Example 4.3 is the “only” example.

Theorem 4.5 (Abstract Spectral Theorem). Suppose that A is a unital commu-
tative C∗-algebra. Then the Gelfand map is an isometric ∗-isomorphism of A onto
C(∆).

Remark 4.6. The word “onto” in the statement is critical here. Notice also that
the “∗”-part simply means that x̂∗(h) = x̂(h). This result should be compared with
Equation 1.2.

Proof. Let h ∈ ∆. We first want to show that h(x∗) = h(x) (thus, x̂∗ = x̂). Since

each x ∈ A equals x+x∗

2 − i ix+(ix)∗

2 , each x ∈ A can be written as x1 + ix2 with
x∗i = xi. Thus, it suffices to show that h(x) ∈ R if x = x∗.

Towards this end, let t ∈ R. Define

ut = exp(itx) =

∞∑
n=0

(itx)n

n!
.

(Notice that exp(x + y) = exp(x) exp(y) if x, y ∈ A, since x and y commute.)
Observe that u∗t = exp(−itx). Thus,

‖ut‖2 = ‖u∗tut‖ = ‖ exp(−itx+ itx)‖ = ‖ exp(0)‖ = 1.

6For a proof, see [5, Theorem A.11].
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Since ‖h‖ = 1,

exp(tRe(ih(x))) = exp(Re(ith(x)))

=
∣∣exp(ith(x))

∣∣
= |h(ut)| ≤ 1

for all t ∈ R. Therefore, h(x) ∈ R.

Next we show that ‖x̂‖∞ = ‖x‖. But ‖x̂‖∞ = ρ(x) = lim
n→∞

‖xn‖ 1
n by Theo-

rem 2.6 and Theorem 3.6. But if x = x∗, then

‖x‖2 = ‖x∗x‖ = ‖x2‖, and

‖x‖2
n

= ‖x2n‖

by induction. Thus, lim
n→∞

‖xn‖ 1
n = ‖x‖ (the limit exists by Theorem 2.6, so checking

a subsequence is enough). Thus, ‖x̂‖∞ = ‖x‖ whenever x = x∗. In general,

‖x̂‖2∞ = ‖¯̂xx̂‖∞ = ‖x∗x‖ = ‖x‖2.

We have shown that x 7→ x̂ is an isometric ∗-isomorphism of A onto a necessarily
closed7 subalgebra of C(∆). But the functions in the image clearly separate points
of ∆. Furthermore, the image is closed under conjugation, and contains the constant
functions (since A is unital). The conclusion follows from the Stone-Weierstrass
theorem. �

We have one more technicality to overcome before we can be satisfied with our
abstract version of the Spectral Theorem. Namely, if T ∈ B(H) and A is a C∗-
subalgebra of B(H) which contains T , then we have two notions of the spectrum
of T : one as an element of B(H) and one as an element of A. In general, if A is an
unital Banach algebra and B is a subalgebra with

e ∈ B ⊆ A.

Then one clearly has

(4.1) σA(x) ⊆ σB(x).

Unfortunately, as the next example shows, it may happen that the inclusion in (4.1)
is proper.

Example 4.7. Let D := { z ∈ C : |z| < 1 } be the open unit disk. Let A(D) be
the set of holomorphic functions on D which have a continuous extension to the
boundary T = { z ∈ C : |z| = 1 }. By the maximum modulus principle, each
f ∈ A(D) is uniquely determined by its values on T. Therefore, we can view A(D)
as a Banach subalgebra of C(T) with respect to the sup norm ‖·‖∞. The reflection
principle assures that if f ∈ A(D), then so is f∗ where we define

(4.2) f∗(z) := f(z̄).

Then A(D) is a Banach ∗-subalgebra of C(T) (where both have the involution
defined by (4.2)).8 Now let f be the identity function z 7→ z. Then as an element

7Since the map is isometric, the image of A is complete and therefore closed.
8By considering f(z) := i+z, it is not hard to verify that neither C(T) nor A(D) is a C∗-algebra

with this ∗-algebra structure. They are, of course, Banach ∗-algebras.
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of A(D), λ− f is invertible if and only if λ /∈ D. Thus

σA(D)(f) = D ∪T while σC(T)(f) = T.9

On the other hand, if A and B are C∗-algebras, then we can invoke the Abstract
Spectral Theorem to show that we always have equality in (4.1).

Theorem 4.8 (Spectral Permanence). Suppose that B is a unital C∗-subalgebra of
a C∗-algebra A (i.e., e ∈ B ⊆ A). Then for all x ∈ B, σB(x) = σA(x).

Proof. Fix x ∈ B. We need only show that σB(x) ⊆ σA(x). A moment’s reflection
shows that it suffices to show that x ∈ G(A) implies that x−1 ∈ B. Furthermore, I
claim it suffices to do this for x self-adjoint. To see this notice that x ∈ G(A) implies
that x∗ ∈ G(A), and hence x∗x ∈ G(A). Thus, (x∗x)−1x∗ is a left inverse for x,
and, since x−1 exists, x−1 = (x∗x)−1x∗. Thus, it suffices to show that (x∗x)−1 ∈ B
if x is; the claim follows.

Let C be the C∗-subalgebra of A generated by x and x−1, and let D be the
∗-subalgebra generated by e and x. Since (x−1)∗ = (x∗)−1 = x−1, C is commuta-
tive.10 Thus, C ∼= C(∆), and C(∆) is generated by the functions x̂ and ŷ = 1/x̂
(since h(x)h(x−1) = 1 for all h ∈ ∆). But the image of D in C(∆) is generated by
1 and x̂. On the other hand, if x̂(h) = x̂(h′), then ŷ(h) = ŷ(h′). It follows that x̂
must separate points of ∆! Therefore, D = C by the Stone-Weierstrass Theorem.
In particular, x−1 ∈ D ⊆ B. �

Thus, we see that we may speak unambiguously about the spectrum of an op-
erator T ∈ B(H) provided we agree to always compute σ(T ) with respect to some
C∗-subalgebra.

Example 4.9 (The functional calculus). Let T be a normal operator in B(H). Let A
be the C∗-algebra generated by I and T (and T ∗!). By Theorem 4.5, A is isomorphic

to C(∆) via the Gelfand map. But T̂ : ∆→ C is a continuous and one-to-one map
of ∆ onto σA(T ) = σ(T ). Since ∆ is compact, this map is a homeomorphism.
In summary, we have produced a ∗-isomorphism of C

(
σ(T )

)
onto A which takes

the function λ 7→ λ to T . If f ∈ C
(
σ(T )

)
, we denote the image of f under this

isomorphism by f(T ). (Compare this with the discussion following Proposition 1.5
on page 3.)

Remark 4.10 (Composition in the functional calculus). If T is normal and f ∈
C
(
σ(T )

)
, then f(T ) is normal (its adjoint is just f̄(T )), and by spectral permanence

(Theorem 4.8), σ
(
f(T )

)
= σB

(
f(T )

)
, where B = C∗(I, T ). But the functional

calculus gives us an isomorphism Φ : C
(
σ(T )

)
→ B such that Φ(f) = f(T ). Thus,

σB
(
f(T )

)
is just the range, f

(
σ(T )

)
, of f . Therefore spectral permanence gives a

baby version of the Spectral Mapping Theorem: σ
(
f(T )

)
= f

(
σ(T )

)
.

Thus if g ∈ C
(
f
(
σ(T )

))
, then the functional calculus allows us to define g

(
f(T )

)
.

Naturally, we expect that g
(
f(T )

)
= h(T ), where h := g ◦ f . Since Φ is an algebra

9Note that σA(D)(f) is the union of σC(T)(f) and the only bounded connected component of

the complement of σC(T)(f). This is a general phenomenon as illustrated by [8, Theorem 10.18].
10C is fairly clearly the closure of the commutative algebra of (two variable) polynomials in x

and x−1.
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homomorphism, this is clear if g is a polynomial in λ and λ̄.11 But the Stone-
Weierstrass Theorem implies such polynomials are uniformly dense in C

(
f
(
σ(T )

))
.

Thus there are polynomials gn → g uniformly on f
(
σ(T )

)
. Then

gn
(
f(T )

)
→ g

(
f(T )

)
.

On the other hand, gn ◦ f → h := g ◦ f uniformly on σ(T ). Therefore,

gn
(
f(T )

)
= (gn ◦ f)(T )→ h(T ),

and g
(
f(T )

)
= h(T ) as we wanted.

Now I can give some examples which hint at the power of Theorem 4.5. The
first says that although elements of the spectrum of a normal operator T need not
be eigenvalues, T does possess “approximate eigenvectors”.

Corollary 4.11. Suppose that T is a normal operator on H, and that λ ∈ σ(T ).
Then there is a sequence { ξn } of unit vectors in H so that (T − λI)ξn converges
to zero in H.

Proof. It suffices to consider the case where λ = 0 (replace T by T − λI). By
Theorem 4.5 and the functional calculus, there is a ∗-isomorphism Ψ : C

(
σ(T )

)
→

B(H) which takes the function defined by f(ζ) = ζ to T . For each n, let fn be a
function in C

(
σ(T )

)
of norm 1 which equals 1 at 0 (recall we’re assuming 0 ∈ σ(T )),

and which vanishes off the disk of radius 1/n centered at 0. Notice that ffn → 0
in norm in C

(
σ(T )

)
. Since Ψ is isometric, Ψ(ffn) = Ψ(f)Ψ(fn)→ 0 in B(H)! On

the other hand, ‖Ψ(fn)‖ = 1. Thus, we may choose ηn ∈ H so that ξn = Ψ(fn)ηn
has norm 1, while |ηn| ≤ 2. Since T (ξn) = Ψ(f)(ξn) = Ψ(ffn)(ηn), the result
follows. �

Corollary 4.12. Suppose that T is a normal operator in B(H). Then the following
statements are equivalent.

(1) T is a positive operator in B(H).
(2) σ(T ) ⊆ [0,∞).
(3) There is an operator R ∈ B(H) such that T = R∗R.

Moreover, T has a unique positive square root S ∈ B(H) (i.e., S2 = T ), and S can
be approximated arbitrarily closely in norm by polynomials in T .

Proof. Suppose λ ∈ σ(T ). Choose { ξn } as in Corollary 4.11. Then ((T −
λI)ξn, ξn) → 0 implies that (Tξn, ξn) → λ. Since T is positive, it follows that
σ(T ) ⊆ [0,∞). Therefore, (1) implies (2).

On the other hand, if σ(T ) ⊆ [0,∞), then f(ζ) =
√
ζ defines an element of

C(σ(T )). Define S to be f(T ) (as in Example 4.9). Now T = S2, and S∗ = f̄(T ) =
f(T ) = S; we’ve shown that (2) implies (3).

That (3) implies (1) is immediate.
The existence of a positive square root follows from the above; in fact the S

constructed above is positive since S = R2 for R = 4
√
T . The statement about

polynomial approximation follows from the fact that f can be uniformly approxi-
mated by polynomials on σ(T ).

Now let S′ be another positive square root. Since S′ commutes with T , it
commutes with any polynomial in T . Hence, S′ must commute with S in view

11For example, suppose that g(λ) = λnλ̄m. Then g
(
f(T )

)
= f(T )n(f(T )∗)m =

fn(T )f̄m(G) = g ◦ f(T ).
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of the previous paragraph. Thus, B := C∗({ I, S, S′ }) is commutative (say ∼=
C(∆)). Notice that Ŝ and Ŝ′ are nonnegative functions on ∆ (for example using

Theorem 4.8, Ŝ(∆) = σB(S) = σ(S) ⊆ [0,∞)). Since S and S′ have the same
square, S = S′. �

Now a meaty example: recall that a (unitary) representation of a locally compact
group G is merely a homomorphism π of G into the unitary group of B(H). We
insist that the homomorphism be continuous in the sense that g 7→ π(g)ξ should
be continuous for all ξ ∈ H.

Corollary 4.13. Let G be a locally compact abelian group. Then every irreducible
representation of G is one dimensional (i.e., a character).

Proof. Let π : G→ B(H) be an irreducible representation of G. Then

π̃(f) =

∫
G

f(t)π(t) dλ(t)

defines a ∗-homomorphism of L1(G,λ) into B(H) 12. We may extend π̃ to B =
C⊕L1(G,λ) in the obvious way: π̃((λ, f)) = λI+π̃(f). The point is that if π has no
nontrivial invariant subspaces, then one can show that π̃ has no nontrivial (closed)

invariant subspaces 13. Therefore, A = π̃(B) is a unital commutative C∗-algebra,
and A has no nontrivial (closed) invariant subspaces either. If ∆ = ∆(A) consists
of a single point, the result follows easily. If not, then since A ∼= C(∆), A would
contain a closed proper ideal J and a element x 6= 0 such that xJ = { 0 }. Since

J is an ideal, V = span{ π̃(y)ξ : y ∈ J and ξ ∈ H} is a nonzero closed invariant
subspace of H. However, any vector of the form π̃(x)η for η ∈ H belongs to V ⊥.
Since x 6= 0, V ⊥ 6= 0. This is a contradiction. �

Definition 4.14. An operator K ∈ B(H) is said to be compact if

(4.3) K(B1) = {Kξ ∈ H : ξ ∈ H and |ξ| ≤ 1 }
has compact closure in H. (Equivalently14, the image of every bounded sequence
has a convergent subsequence.)

Lemma 4.15. Suppose that K is a bounded normal compact operator in B(H).

(1) Every nonzero15 λ ∈ σ(K) is an eigenvalue for K.
(2) The eigenspace Eλ is finite dimensional if λ 6= 0.
(3) σ(K) is countable. Furthermore, the only possible accumulation point of

σ(K) is 0.

12This integral is Banach space valued. It can be interpreted weakly as saying that

(π̃(f)ξ, η) =

∫
G
f(t)(π(t)ξ, η) dλ(t).

Note that π̃(f) is bounded since for every B : H × H → C bilinear, ‖B(h, k)‖ ≤ M‖h‖‖k‖ for
some constant M.

13If { fα } is an approximate identity in L1(G,λ),and if we define s · fα(t) = fα(t − s), then

π̃(s · fα)ξ → π(s)ξ for all ξ ∈ H and s ∈ G. The assertion follows.
14Actually, one can prove that K(H1) will be compact whenever it’s relatively compact. Fur-

thermore, K will be a compact operator if and only if K is the norm limit of finite rank operators.
It follows that the set of compact operators is a norm closed self-adjoint ideal in B(H). These
facts aren’t particularly difficult to show, but we shall save that path for another day.

15In the infinite dimensional case, one always has 0 ∈ σ(K) if K is compact. However, it is
possible that 0 may not be an eigenvalue—see Example 4.17.
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Proof. Let λ ∈ σ(K). Choose { ξn } as in Corollary 4.11. We may assume that
Kξn → η in H. Since (K − λI)ξn = Kξn − λξn → 0, it follows that λξn → η in H
as well. Furthermore, |η| = |λ| and Kη = λη. This proves (1).

Parts (2) and (3) follow from the fact that the image of any orthonormal basis of
eigenvectors with eigenvalues bounded away from zero can’t have an accumulation
point. �

Theorem 4.16 (Spectral Theorem for Compact Operators). Let K be a normal
compact operator in B(H), and let {λn }n∈I be the nonzero eigenvalues of K. Then,
if Pn is the projection16 onto the λn-eigenspace,

K =
∑
n∈I

λnPn,

where the sum converges in norm.

Proof. Using the functional calculus, we have an isometric ∗-isomorphism Ψ :
C
(
σ(K)

)
→ B(H) taking the identity function f to K. Since each λn is iso-

lated in σ(K) by Lemma 4.15, the characteristic function fn of {λn } is continuous
on σ(K). If σ(K) is infinite, then λn → 0. In any case,

f =
∑
n∈I

λnfn

in the ‖ · ‖∞-norm. Therefore, K =
∑
n∈I λnΨ(fn). It only remains to show that

Ψ(fn) = Pn.
Notice that each Ψ(fn) is an projection, and Ψ(fn)Ψ(fm) = Ψ(fnfm) = 0 if

n 6= m. Consequently, H = H0 ⊕n∈I Hn, where Hn is the range of Ψ(fn). One can
now see that Ψ(fn) = Pn. �

Example 4.17. Let H = `2, and let { e1, e2, . . . } be the usual orthonormal basis.
Let {λn } be any sequence tending to 0, and let Pn be the projection onto the space
spanned by en. Then

K =

∞∑
n=1

λnPn

defines a compact operator17 with spectrum {λn }∞n=1 ∪ { 0 }. Notice that if 0 /∈
{λn }, then 0 is not an eigenvalue of K.

5. Spectral Integrals

Definition 5.1. Let H be a complex Hilbert space, and suppose (X,M) is a
measurable space. Then a H-projection valued measure on (X,M) is a function P
from M into the orthogonal projections in B(H) so that

(a) P (X) = I, and
(b) if {En }∞n=1 ⊆M are pairwise disjoint, then

P
( ∞⋃
n=1

En

)
=

∞∑
n=1

P (En)

16By a projection, I always mean a self-adjoint idempotent—in other words, an orthogonal

projection.
17Using the unproved fact that the norm limit of finite rank operators is compact.
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in the strong operator topology.18

Example 5.2. Let (X,M, µ) be a finite measure space, and set H = L2(X,µ).
For each E ∈ M, define P (E) = MχE (see Example 1.1 on page 2). Now if

{En } ⊆ M are pairwise disjoint, and we let E =
⋃
En, then for each ξ ∈ L2(X,µ),

the dominated convergence theorem implies that
∑∞
n=1 ξχEn

converges to ξχ
E

in

L2(X). In other words,
∑∞
n=1 P (En) converges to P (E) in the strong operator

topology.

In many respects, projection valued measures act like honest measures. In par-
ticular, for each pair of vectors ξ, η ∈ H, the formula

µξ,η(E) = (P (E)ξ, η)

defines a complex measure on (X,M). Furthermore, projection valued measures
are monotonic: if F ⊆ E, then P (E) = P (F ) + P (E \ F ); in particular, we have
P (F ) ≤ P (E) so that P (F )P (E) = P (F ) whenever F ⊆ E. More generally, a
surprising consequence of being projection valued is that

P (A ∩B) = P (A)P (B)

for all A,B ∈M. To see this, notice that

P (A ∪B) + P (A ∩B) = P (A) + P (B)

P (A ∪B)P (A) + P (A ∩B)P (A) = P (A) + P (B)P (A)

P (A) + P (A ∩B) = P (A) + P (B)P (A),

where the last bit follows from P (A ∩B) ≤ P (A) ≤ P (A ∪B).
Just as for ordinary measures, the set of E ∈ M for which P (E) = 0 is a σ-

algebra, and we may enlarge M if necessary so that P (E) = 0 and A ⊆ E implies
that A ∈ M (and hence P (A) = 0). A function f : X → C is called measurable if
f−1(V ) ∈M for every open set V ⊆ C and we define

‖f‖∞ = inf{ k ∈ [0,∞] : P
(
{x : |f(x)| ≥ k }

)
= 0 }.

Let L∞(P ) be the set of equivalence classes of measurable functions with ‖f‖∞ <
∞. As usual, F = span{χB : B ∈ M} are called simple functions. It is not hard
to see that F is dense in the Banach ∗-algebra (L∞(P ), ‖ · ‖∞). (The involution is
f∗ = f̄ .)

Define I : F → B(H) by

I
( n∑
i=1

λiχBi

)
=

n∑
i=1

λiP (Bi).

Of course, (5) is only well defined because the function
∑n
i=1 λiχBi

can be rewritten

in the form
∑m
j=1 αjχEj

, where the Ej form a disjoint refinement of the Bi. Also,

18A net {Tα } converges to T in the strong operator topology if Tαξ converges to Tξ in H for
every ξ ∈ H.



THE SPECTRAL THEOREM 17

in this case, it is easy to see that∥∥∥I( n∑
i=1

λiχBi

)∥∥∥ =
∥∥∥ m∑
j=1

αiP (Ei)
∥∥∥ = max

j
|αi|

=
∥∥∥∑λiχBi

∥∥∥
∞
.

Therefore I is isometric and extends to a linear isometry I : L∞(P )→ B(H) which
is usually denoted by

I(f) =

∫
X

f(x) dP (x).

Notice that I(f) is the norm limit of sums of the form
∑n
i=1 λiP (Ei).

The following observations are routine for f ∈ F and extend to L∞(P ) by
continuity.

Proposition 5.3. Suppose f, g ∈ L∞(P ).

(a)
∫
f dP =

∫
g dP if and only if f = g almost everywhere.

(b) f 7→
∫
f dP is an isometric ∗-homomorphism into B(H). That is

(a)

∫
(f + λg) dP =

∫
f dP + λ

∫
g dP

(b)

∫
fg dP =

(∫
f dP

)(∫
g dP

)
(c)

∫
f̄ dP =

(∫
f dP

)∗
(d)

∥∥∥∫ f dP
∥∥∥ = ‖f‖∞.

(c) If µξ,η is the complex measure on (X,M) defined by µξ,η(E) = (P (E)ξ, η),
then (∫

f dPξ, η
)

=

∫
f dµξ,η, and∥∥∥(∫ f dP

)
ξ
∥∥∥2

=

∫
|f |2 dµξ,ξ.

(d) P (A) commutes with (
∫
f dP ) for all A ∈M.

(e)
∫
f dP is normal, and is self-adjoint if and only if f is real almost every-

where.

When dealing with locally compact X, one usually works with regular projection
valued measures.

Definition 5.4. A H-projection valued Borel measure P on a locally compact
space X is called regular if

P (E) = sup{P (C) : C is a compact subset of X }.

Remark 5.5. It is immediate that P will be regular if and only if the measures µξ,ξ
defined in (5) are regular for all ξ ∈ H. For our purposes, this is just a technicality
as every finite Borel measure on a second countable locally compact space is regular
(see for example, Rudin’s Real & Complex Analysis, 2.18).

Theorem 5.6. Suppose that A is a unital commutative C∗-subalgebra of B(H),
and that ∆ is the maximal ideal space of A.
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(a) There is a unique regular H-projection valued measure P on ∆ such that

T =

∫
∆

T̂ dP

for every T ∈ A (T̂ is the Gelfand transform of T ).
(b) If O is open and nonempty in ∆, then P (O) 6= 0.
(c) An operator in S ∈ B(H) commutes with every T ∈ A if and only if S

commutes with P (E) for every Borel set E ⊆ ∆.

Proof. Uniqueness follows from the fact that P is uniquely determined by the mea-
sures µξ,η, and since the µξ,η are regular, the formula∫

∆

T̂ dµξ,η = (Tξ, η)

uniquely determines the µξ,η in view of the unicity in the Riesz Representation
Theorem.

By Theorem 4.5 on page 10, the inverse of the Gelfand map M : C(∆) → A
is an (isometric) ∗-isomorphism into B(H). Let B(X) denote the bounded Borel
functions on X. We want to extend M to a ∗-homomorphism of B(X) into B(H).

However, given ξ, η ∈ H, the Riesz representation theorem gives us a unique
regular Borel measure µξ,η on ∆ so that

(
M(f)ξ, η

)
=

∫
∆

fdµξ,η

for all f ∈ C(∆). Define M(g) for g ∈ B(∆) by the same formula. It is not hard to
see that M(g) is a bounded linear operator.19 Since µ̄ξ,η = µη,ξ, we have

(
ξ,M(f)η

)
=
(
M(f)η, ξ

)
=

∫
∆

f̄ dµ̄η,ξ

=

∫
∆

f̄ dµξ,η

=
(
M(f̄)ξ, η

)
for all f ∈ B(∆). Thus M(f)∗ = M(f̄).

Now we want to see that M(fg) = M(f)M(g) for f, g ∈ B(∆). But we know
this holds for f, g ∈ C(∆), so∫

∆

fg dµξ,η =
(
M(f)M(g)ξ, η

)
=

∫
∆

f dµM(g)ξ,η

for all f, g ∈ C(∆). In particular,

g dµξ,η = dµM(g)ξ,η

19Notice that one needs the fact that the µξ,η are uniquely determined here. For example, we

must have µξ+ζ,η = µξ,η + µζ,η ; it follows that M(g)(ξ + ζ) = M(g)ξ +M(g)ζ.
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for all ξ, η ∈ H and g ∈ C(∆). Thus, (5) remains valid if f ∈ B(∆). For convenience,
let ζ = M(f)∗η. Thus,∫

∆

fg dµξ,η =

∫
∆

f dµM(g)ξ,η

=
(
M(f)M(g)ξ, η

)
=
(
M(g)ξ, ζ

)
=

∫
∆

g dµξ,ζ .

Again, the uniqueness of the uξ,η’s implies that

f dµξ,η = dµξ,ζ .

Thus
∫

∆
fg dµξ,η =

∫
∆
g dµξ,ζ for all f, g ∈ B(∆)! Or more simply:∫

∆

fg dµξ,η =
(
M(f)M(g)ξ, η

)
for all f, g ∈ B(∆) and ξ, η ∈ H.

Now suppose fn → f pointwise on ∆ and that { ‖fn‖∞ } is bounded. Then, as
the |µξ,η| are finite measures, it follows that fn → f in L1(µξ,η) for all ξ, η ∈ H.
The point being that I claim M(fn) → M(f) in the strong operator topology on
∆. But this follows easily from the fact that(

M(fn)−M(f)
)∗(

M(fn)−M(f)
)
→ 0

in the weak operator topology20. To see this, notice that the left hand side of (5)
becomes M(|fn − f |2), and |fn − f |2 → 0 in L1(µξ,η) for all ξ, η ∈ (H).

Now if E ⊆ ∆ is Borel, define

P (E) = M(χ
E

).

By the above, P (E) is a self-adjoint idempotent—i.e., a projection. In particular,
P (X) = M(1) = I. If {Ei }∞i=1 are pairwise disjoint with union E, then fn =∑n
i=1 χEi

converges pointwise to f = χ
E

, and ‖fn‖∞ = 1 for all n. Thus,

P (E) =

∞∑
i=1

P (Ei)

in the strong operator topology. In otherwords, P is aH-projection valued measure.
Furthermore, ∫

∆

f dP = M(f)

for all f ∈ B(∆) as the result is immediate for simple functions (recall that every f ∈
B(∆) is the uniform limit of uniformly bounded simple functions). This proves (1).

If O is open and P (O) = 0, then part (1) implies that T = 0 if T̂ vanishes off
O. Thus, if P (O) = 0, then it follows from Urysohn’s lemma that O = ∅. This
proves (2).

To establish (3), let ζ = S∗η. Now by (1), TS = ST for every T ∈ A if and only if
µξ,ζ = µSξ,η for all ξ, η ∈ H. However, this happens if and only if P (E)S = SP (E)
for every Borel set E. �

20A net {Tα } converges to T in the weak operator topology if (Tαξ, η) → (Tξ, η) for all
ξ, η ∈ H.
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The following version of the spectral theorem for bounded normal operators now
follows quickly.

Corollary 5.7. If T ∈ B(H) and T ∗T = TT ∗, then there is a unique H-projection
valued measure on the Borel sets of σ(T ) so that

T =

∫
σ(T )

λ dP (λ).

In fact, there is an isometric ∗-isomorphism M : L∞(P )→ B(H) such that

M(f) =

∫
σ(T )

f(λ) dP (λ).

An operator S ∈ B(H) commutes with T if and only if S commutes with every
spectral projection P (E).

Remark 5.8. If S ⊆ B(H), then we define

S′ = {T ∈ B(H) : TR=RT for all R ∈ S }.

With our hypotheses and notation from Theorem 5.6 on page 17, one can show that
M
(
B(∆)

)
= M

(
L∞(P )

)
= A′′. A famous theorem of von-Neumann’s (the “Dou-

ble Commutant Theorem”) says that M
(
C(∆)

)′′
is the strong (or weak) operator

closure of A = M
(
C(∆)

)
.

Furthermore, if H is separable, then writing H as a countable direct sum of

cyclic subspaces for A = M
(
C(∆)

)′
we obtain a cyclic vector for A, and hence a

separating vector ξ for A = M
(
C(∆)

)
(i.e., T = 0 if and only if Tξ = 0). The

space L∞(µξ,ξ) coincides with L∞(P ).

6. The Holomorphic Symbolic Calculus

The functional calculus for normal elements in a C∗-algebra—both the contin-
uous (Example 4.9 on page 12) and Borel (Theorem 5.6 on page 17)—is quite
powerful. Still it is reasonable to ask what can be done with non-normal elements
belonging to algebras which may not be C∗-algebras (horrors!). The answer, which
comes fairly directly from [8, §§10.21–10.33], will turn out to be “quite a bit,” but
at the expense of considering a considerably smaller class of functions—namely,
holomorphic functions. And except for a comment at the end, we will consider
only unital algebras. For example, we can define exp(x) for any x in any unital
Banach algebra simply as the sum of the absolutely convergent series

∑∞
n=0 x

n/n!.
Naturally, we can do a bit more than that. Furthermore, these techniques will yield
non-trivial results even for n× n matrices over C. For example, it will follow from
Theorem 6.11 on page 27 that any invertible n× n matrix has a logarithm. First,
it will be convenient to digress slightly and make a few comments about Banach
space valued integrals of a rather special sort.

Suppose that A is a Banach space and that f : [a, b] → A is continuous. Then
one can define ∫ b

a

f(t) dt

is a number of ways.21 I will describe a very straightforward way to do so here.

21See [11, Lemma 1.91 and footnote 21].



THE SPECTRAL THEOREM 21

Just as in the scalar case, if P = { a = t0 < t1 < · · · < tn = b } is a partition
of [a, b], then ‖P‖ = max1≤i≤n ∆ti = max1≤i≤n |ti − ti−1| is called the mesh of
P. One says that P ′ is a refinement of P and writes P ′ ≺ P if P ′ ⊇ P. If
ζ = (z1, z2, . . . , zn) ∈ [a, b]n satisfies zi ∈ [ti−1, ti], then

R(f,P, ζ) =

n∑
i=1

f(zi)∆ti

is called a Riemann sum for f with respect to P. Since f is necessarily uniformly
continuous, notice that given an ε > 0 there is a δ > 0 so that if ‖P‖ < δ and
P ′ ≺ P, then

‖R(f,P ′, ζ ′)−R(f,P, ζ)‖ < ε

for any appropriate ζ and ζ ′22.
Now for each n ∈ N, let Pn be the uniform partition of [a, b] into 2n sub-intervals.

Let ζn = (t0, t1, . . . , t2n−1), and put

an = R(f,Pn, ζn).

Notice that m ≥ n implies that Pm ≺ Pn. It now follows from (6) that { an }∞n=1 is
Cauchy in A. We will define ∫ b

a

f(t) dt = lim
n→∞

an.

Using (6) again, it is a simple matter to check that for all ε > 0 there is a δ > 0 so
that ‖P‖ < δ implies that

‖R(f,P, ζ)−
∫ b

a

f(t) dt‖ < ε

for any compatible vector ζ.
These observations ought to suffice for most purposes. For example, it is routine

to verify that if A is a Banach algebra, if f : [a, b]→ A is continuous, and if x ∈ A,
then

x

∫ b

a

f(t) dt =

∫ b

a

xf(t) dt, and(∫ b

a

f(t) dt
)
x =

∫ b

a

f(t)x dt.

Our interest in these sorts of integrals is to define contour integrals∫
Γ

f(λ) dλ,

22To see this, simply choose δ so that |x − y| < δ implies that ‖f(x) − f(y)‖ < ε/(b − a).

Then the left-hand side of (6) is less than or equal to
∑n
i=1 ‖R(f,P ′i, ζi) − f(zi)∆ti‖, where

P ′i = P ′ ∩ [ti−1, ti]. If P ′i = { ti−1 = ti0 < · · · < timi = ti }, then (6) is bounded by

n∑
i=1

‖
mi∑
k=1

f(zik)∆tik − f(zi)

mi∑
k=1

∆tik‖ ≤
n∑
i=1

mi∑
k=1

‖f(zik)− f(zi)‖∆tik

≤ ε/(b− a)

n∑
i=1

mi∑
k=1

∆tik = ε.
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where Γ is a piecewise smooth path in C (not necessarily connected), and f is a
continuous function from (the image of) Γ into a Banach algebra A. Observe that
it is clear from our definition of the integral that if Λ ∈ A∗, then

Λ
(∫

Γ

f(λ) dλ
)

=

∫
Γ

Λ
(
f(λ)

)
dλ.

Therefore the usual Cauchy Theorem [9, Theorem 10.35] applies virtually word-for-
word to A-valued holomorphic functions. We will also make use of the following
topological fact. If K is a compact subset of C and if Ω is an open neighborhood
of K, then there is a contour Γ which surrounds K in Ω in the sense that Γ lies in
Ω and

indΓ(z) :=
1

2πi

∫
Γ

1

ξ − z
dξ =

{
1 if z ∈ K, and

0 if z /∈ Ω.

This follows from the proof of [9, Theorem 13.5]. Notice that Γ may have to have
several components.23

The basic idea in the following will be to use such contours as described in the
previous paragraph with K = σ(x), the spectrum of an element x in a Banach
algebra, to make sense of a kind of A-valued Cauchy Integral formula. The first
step is to see that we get the “right” thing for functions of the form f(λ) = (α−λ)n.

Lemma 6.1. Suppose that A is a unital Banach algebra, that x ∈ A, and that
α ∈ C \ σ(x). Then, if Γ is any contour surrounding σ(x) in the complement of α
in C, and if n is any integer,

(6.1)
1

2πi

∫
Γ

(α− λ)n[λe− x]−1 dλ = [αe− x]n.

Remark 6.2. Notice that λ 7→ [λe−x]−1 is holomorphic (hence continuous) off σ(x)
so that the integral is defined. Similarly, the right-hand side makes sense for every
n ∈ Z since α /∈ σ(x).

Proof. Let the value of (6.1) be yn. If λ /∈ σ(x), then

[λe− x]−1 − [αe− x]−1 = [λe− x]−1
(
(αe− x)− (λe− x)

)
[αe− x]−1

= (α− λ)[λe− x]−1[αe− x]−1

= (α− λ)[αe− x]−1[λe− x]−1.

Thus

yn =
[αe− x]−1

2πi

(∫
Γ

(α− λ)n dλ+

∫
Γ

(α− λ)n+1[λe− x]−1 dλ

)
.

The first integral is always zero when n 6= −1, and equals zero even when n = −1
because we have assumed that indΓ(α) = 0. Thus,

(6.2) (αe− x)yn = yn+1.

Thus (6.1) will follow from (6.2) once we show that

1

2πi

∫
Γ

[λe− x]−1 dλ = e.

23This definition is more subtle that it seems at first glace. Notice that if K is the unit circle

and Ω is the complement of 0 in C, then Γ will have to have two components; for example, Γ

could consist of a positively oriented circle of radius 3/2 and a negatively oriented circle of radius
1/2.
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Notice that if Γr is a positively oriented circle of radius r > ‖x‖, then Γr sur-
rounds σ(x) and

[λe− x]−1 =

∞∑
n=0

λ−n−1xn

uniformly for λ ∈ Γr. Thus

(6.3)
1

2πi

∫
Γr

[λe− x]−1 dλ = e

by termwise integration. Finally, since f(λ) = [λe − x]−1 is holomorphic on the
complement of σ(x), and since

indΓ(z) = 1 = indΓr (z)

for all z ∈ σ(x), Cauchy’s Theorem24 implies that (6.3) holds with Γr replaced
by Γ. �

Now suppose that R is a rational function with poles at α1, α2, . . . , αn. The
usual theory of partial fraction decomposition implies that

(6.4) R(λ) = P (λ) +
∑
k,m

cm,k(λ− αm)−k,

where P is a polynomial and each cm,k is a complex constant. Note that the sum
in (6.4) is finite. If A is a unital Banach algebra and if x ∈ A has spectrum disjoint
from the poles of R, then for the sake of definiteness we define

R(x) = P (x) +
∑
k,m

cm,k[x− αme]−k.

Observe that if α and α′ are not in σ(x), then [αe−x]−1 commutes with [α′e−x]−1

as well as with Q(x) for any polynomial Q. Thus if (6.4) also equals

R(λ) =
P1(λ)

(λ− α1)r1 · · · (λ− αn)rn ,

then R(x) = P1(x)[x − α1e]
−r1 · · · [x − αne]

−rn . Thus, the definition of R(x) is
independent of the representation of R. In particular, if R(λ) = f(λ)g(λ) with f
and g rational, then R(x) = f(x)g(x). We will need this observation for our main
result (Theorem 6.5 on the following page). However combining Lemma 6.1 on the
preceding page and (6.4), we obtain the next result.

Theorem 6.3. Suppose that A is a unital Banach algebra and that x ∈ A. Let
Ω be a neighborhood of σ(x) in C, and let Γ be a contour surrounding σ(x) in Ω.
Then

R(x) =
1

2πi

∫
Γ

R(λ)[λe− x]−1 dλ

for all rational functions R ∈ H(Ω).

Since Theorem 6.3 implies that the Cauchy formula gives the “right” answer for
rational functions, we are lead to the next definition.

24We need a fairly sophisticated version of Cauchy’s Theorem here — for example, [9, Theo-
rem 10.35] will do.
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Definition 6.4. Suppose that A is a unital Banach algebra and that Ω ⊆ C is
open. Let

AΩ = {x ∈ A : σ(x) ⊆ Ω }.
Also if f ∈ H(Ω) and x ∈ AΩ, then we define

f̃(x) =
1

2πi

∫
Γ

f(λ)[λe− x]−1 dλ

for any contour Γ which surrounds σ(x) in Ω. The collection of all such functions

f̃ : AΩ → A will be denoted by H̃(AΩ).

Some comments on this definition are in order. First f̃(x) ∈ A since the inte-
grand is continuous and A is complete. Secondly, since the integrand is actually
holomorphic in Ω \ σ(x), Cauchy’s theorem implies that f̃(x) is independent of the
choice of contour Γ (provided Γ surrounds σ(x)). A consequence of this that we

will make use of without comment, is that f̃(x) depends only on the germ of f
restricted to σ(x). Finally, if R is a rational function in H(Ω) and if x ∈ AΩ, then

R̃(x) = R(x) by Theorem 6.3 on the previous page.
This brings us to the main result.

Theorem 6.5. Let A be a unital Banach algebra and let Ω ⊆ C be open. Then
H̃(AΩ) is a complex algebra, and f 7→ f̃ is an algebra isomorphism of H(Ω) onto

H̃(AΩ). Furthermore, if fn converges to f uniformly on compact subsets of Ω in
H(Ω), then

f̃(x) = lim
n→∞

f̃n(x)

for all x ∈ AΩ.

Proof. Clearly f 7→ f̃ is linear, and it is onto by definition. Furthermore if f̃ is the
zero function, then

f̃(αe) =
1

2πi

∫
Γ

f(λ)(λe− αe)−1 dλ

=
1

2πi

∫
Γ

f(λ)

λ− α
dλ · e

= f(α)e.

It follows that f = 0. Therefore f 7→ f̃ is one-to-one. Since λ 7→ ‖[λe − x]−1‖ is
bounded on any appropriate contour Γ, the continuity assertion is a straightforward
consequence of the definition.

For the remaining statements, it will suffice to show that f 7→ f̃ is multiplicative.
So suppose that h ∈ H(Ω) is of the form h = fg with f, g ∈ H(Ω). If f and g are
rational functions, then

h̃(x) = f̃(x)g̃(x)

in view of the comments preceding Theorem 6.3 on the preceding page. But Runge’s
Theorem [8, Theorem 13.9]25 implies that there are rational functions { fn } and
{ gn } in H(Ω) so that fn → f and gn → g uniformly on compact subsets of Ω.

25Runge’s Theorem: Let Ω be an open set in the plane, let A be a set which contains one
element of each component of S2 \ Ω, and assume that f ∈ H(Ω). Then there is a sequence of
rational functions { rn }, with poles only in A such that rn → f uniformly on compacta in Ω.

It should be remarked here that in the special case where Ω is simply connected (and therefore
S2 \Ω is connected by [9, Theorem 13.11]), we may take A = {∞}. Then each rn is a polynomial.
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Clearly hn = fngn converges to h uniformly on compacta as well, and the result
follows from the continuity proved above. �

Remark 6.6. Suppose that x ∈ AΩ and that f ∈ H(Ω) is given by a conver-
gent power series in Ω. Say f(z) = limn→∞ pn(z) for all z ∈ Ω, where pn(z) =∑n
k=0 an(z − z0)n. Then Theorem 6.5 on the preceding page implies that pn(x)

converges to f̃(x). (This follows even if ‖x − z0e‖ is not inside the circle of con-
vergence of

∑∞
k=0 anz

n!) Thus there is no ambiguity when considering expressions
like exp(x). (If you like,

∑∞
n=0 x

n/n! = ẽxp(x).)

Theorem 6.7. Let A be a unital Banach algebra, Ω open in C, x ∈ AΩ, and
f ∈ H(Ω). Then

(a) f̃(x) is invertible in A if and only if f(λ) 6= 0 for all λ ∈ σ(x).

(b) σ
(
f̃(x)

)
= f

(
σ(x)

)
.

Proof. If f(λ) 6= 0 for all λ ∈ σ(x), then g = 1/f ∈ H(Ω1) for some open set

satisfying σ(x) ⊆ Ω1 ⊆ Ω. Now fg = 1 in H(Ω1), so f̃(x)g̃(x) = e in AΩ1
. That is,

f̃(x) is invertible.
Conversely, if f(α) = 0 for some α ∈ σ(x), then there is a h ∈ H(Ω) such that

(λ− α)h(λ) = f(λ). Thus

(x− αe)h̃(x) = f̃(x) = h̃(x)(x− αe).

Since (x− αe) is not invertible, then neither is f̃(x). This proves part (a).

For part (b), fix β ∈ C. Note that β ∈ σ
(
f̃(x)

)
if and only if f̃(x) − βe is not

invertible. By part (a), this is the case if and only if the function f − β has a zero
in σ(x). That is, if and only if β ∈ f

(
σ(x)

)
. �

The second part of the previous theorem is called the Spectral Mapping Theorem.
It will play an important rôle in the next result which shows that the holomorphic
calculus behaves nicely with respect to composition.

Theorem 6.8. Suppose that A is a unital Banach algebra, that Ω is open in C,
that x ∈ AΩ, and that f ∈ H(Ω). Also suppose that Ω1 is an open neighborhood of

σ
(
f̃(x)

)
, and that g ∈ H(Ω1). Finally let Ω0 = {λ ∈ Ω : f(λ) ∈ Ω1 }, and define

h ∈ H(Ω0) by h(λ) = g
(
f(λ)

)
. Then f̃(x) ∈ AΩ1

, and h̃(x) = g̃
(
f̃(x)

)
.

Remark 6.9. More simply put, if h = g◦f , then h̃ = g̃◦f̃ . It should also be observed
that, although this result is reasonably straightforward for rational functions, we
have only shown that f̃n → f̃ pointwise. Thus the proof can not proceed by rational
approximation.

Proof. The Spectral Mapping Theorem implies that σ
(
f̃(x)

)
⊆ Ω1. Therefore

f̃(x) ∈ AΩ1 and g̃
(
f̃(x)

)
is at least defined.

Let Γ1 be a contour which surrounds f
(
σ(x)

)
in Ω1. Since z 7→ indΓ1

(z) is

continuous, there is an open set W such that σ(x) ⊆W ⊆ Ω0 with indΓ1

(
f(λ)

)
= 1

for all λ ∈ W . (In particular, λ ∈ W implies that f(λ) /∈ Γ1.) Now let Γ0 be

On the other hand, by considering f(z) = 1/z in Ω = C\{ 0 }, we see that it is not usually pos-

sible to approximate functions uniformly on compacta by polynomials if Ω is not simply connected.
(In fact, such approximations are possible if and only if Ω is simply connected [9, Theorem 13.11].)
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a contour in W which surrounds σ(x). For each ζ ∈ Γ1, define ϕζ ∈ H(W ) by
ϕζ(λ) = 1/

(
ζ − f(λ)

)
. Thus

[ζe− f̃(x)]−1 = ϕ̃ζ(x) =
1

2πi

∫
Γ0

(
ζ − f(λ)

)−1
[λe− x]−1 dλ

for all ζ ∈ Γ1. But

g̃
(
f̃(x)

)
=

1

2πi

∫
Γ1

g(ζ)[ζe− f̃(x)]−1 dζ

=
1

2πi

∫
Γ1

g(ζ)

2πi

∫
Γ0

(
ζ − f(λ)

)−1
[λe− x]−1 dλ dζ

=
1

2πi

∫
Γ0

(
1

2πi

∫
Γ1

g(ζ)
(
ζ − f(λ)

)−1
dζ

)
[λe− x]−1 dλ,

which, by the Cauchy integral formula, is

=
1

2πi

∫
Γ0

g
(
f(λ)

)
[λe− x]−1 dλ

= h̃(x). �

Remark 6.10 (Separating 0 from ∞). In the next result, we require the hypothesis
that “σ(x) does not separate 0 from ∞”. What does this mean? (This has caused
me some annoyance!) Technically, it means that 0 is in the unique unbounded
connected component of C \ σ(x). (Since σ(x) is compact and therefore bounded
and since { z ∈ C : |z| > r } is connected, the complement of σ(x) has a unique
unbounded connected component.) For the proof below, I would like to believe that
when σ(x) separates 0 and ∞ we can conclude that there is a simply connected
region Ω containing σ(x) and not containing zero. Here “region” is defined to be an
open and connected subset of the plane. However, proving this seems to me to be
pretty hard. We can certainly claim that 0 and∞ lie in the same component of the
complement of σ(x) in the Riemann sphere S2. Thus there is a path γ connecting
0 to ∞ in S2 \ σ(x). I would like to claim that Ω := S2 \ γ∗ is simply connected
by [9, Theorem 13.11].26 Unfortunately, Rudin’s result assumes that Ω is a region
and it is easy to see that γ might have loops so that Ω need not be connected.
However, such a path γ can only cross itself finitely many times (as a curve on
S2!). Therefore we can “snip” off the loops and assume that γ∗ is homeomorphic
to the unit interval I. Then it appears to be nontrivial, but none the less true,
that S2 \ γ∗ is connected. This is a consequence of the homology machinery used
to prove the Jordan Curve Theorem; for example, see [4, Theorem 63.2], or if your
dare, [10, Lemma 4.7.13]. With this result in hand, Ω = S2 \ γ∗ is connected, and
we can apply Rudin’s Theorem 13.11 with a clear conscience. Alternatively, the
proof of [9, Theorem 13.11] seems to imply that, even if γ∗ is not homeomorphic
to I, the connectedness of S2 \ Ω, where Ω := S2 \ γ∗ as above, implies that every
closed path in Ω is homotopic to a point. (Thus, Ω is a disjoint union of simply
connected regions.) Then, since 0 /∈ Ω, we can find branches of the logarithm on
each component and the proof of Theorem 6.11 proceeds just fine. I find neither of
these “solutions” entirely satisfactory, but it’s the best I can do now.

26Here I am using Rudin’s formalism, and using γ∗ to denote the point set associated to the
curve γ.
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Theorem 6.11. Suppose that A is a unital Banach algebra, that x ∈ A is invertible,
and that σ(x) does not separate 0 from ∞. Then

(a) There is a logarithm for x; that is, there is a y ∈ A such that exp(y) = x.
(b) There are roots of all orders for x; that is given n ∈ Z \ { 0 }, there is a

z ∈ A such that zn = x.
(c) For each ε > 0 there is a polynomial P such that ‖x−1 − P (x)‖ < ε.

Remark 6.12. This result is non-trivial even for n × n matrices. For example as
mentioned in the beginning of the section, every invertible n × n complex matrix
has a logarithm.

Proof. By hypothesis, 0 lies in the unbounded component of C \ σ(x). Thus there
is a simply connected set Ω such that σ(x) ⊆ Ω and 0 /∈ Ω (see Remark 6.10 above).
Therefore, there is a f ∈ H(Ω) satisfying

exp
(
f(λ)

)
= λ

for all λ ∈ Ω. Let y = f̃(x). Then exp(y) = x by the preceding result. This proves
part (a).

Now if z = exp(y/n), then zn = x. So part (b) follows from part (a).
Finally since Ω is simply connected, Runge’s Theorem implies that f(λ) = 1/λ

can be approximated uniformly on compacta on Ω by polynomials. Now part (c)
follows. �

Remark 6.13. In the event A is a non-unital Banach algebra, then we can let A+ be
the usual unital Banach algebra containing A as a co-dimension one ideal. (Recall
that if x ∈ A, then σ(x) = σA+(x) by definition.) Then if π : A+ → C is the
quotient map, it is immediate from the definition of the integral that

π
(∫

Γ

f(λ) dλ
)

=

∫
Γ

π
(
f(λ)

)
dλ.

In particular if x ∈ A+
Ω and if Γ surrounds σ(x) in Ω, then

π
(
f̃(x)

)
=

1

2πi

∫
Γ

f(λ)

λ− π(x)
dλ = f

(
π(x)

)
.

It follows that f̃(x) ∈ A if and only if f
(
π(x)

)
= 0. Thus if x ∈ AΩ, then we can

define f̃(x) for all f ∈ H(Ω) which vanish at 0.

Remark 6.14 (Connections with the “ordinary” functional calculus). Suppose now
that A is a unital C∗-algebra and that x is a normal element in A. (In these notes,
we’ve only considered A = B(H) and the functional calculus as in Example 4.9.)
Suppose that f ∈ C

(
σ(x)

)
is such that there is an open neighborhood Ω of σ(x)

and a h ∈ H(Ω) such that h|σ(x) = f . We want to see that h̃(x) = f(x), where of
course, f(x) denotes the element of A produced via the usual functional calculus

for C∗-algebras. However, if h is a rational function, then it is clear that h̃(x) =
h(x) = f(x). But there are rational functions hn such that hn → h uniformly

on compact subsets of Ω. Therefore hn(x) → h̃(x) in A. On the other hand, if
fn := hn|σ(x), then fn → f uniformly on σ(x). Therefore fn(x) → f(x). Since we
agreed that hn(x) = fn(x), the assertion follows.
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7. A Spectral Theorem for Unbounded Operators

Here we want to look at a version of the spectral theorem for unbounded self-
adjoint operators in a Hilbert space H. We are only going to skim the surface. I
got this approach from a course I took from Marc Rieffel long ago when my hat
covered a good deal more hair and a younger man’s brain. (Ok, it was in the
spring of 1978.) Much of what’s in here, and a good deal more, can be found in
[8, Chap. 13].

As Rieffel did, we’ll start with a discussion that motivates our limited point of
view. This section could easily be expanded to include normal operators, but that
will be left to the interested reader.

7.1. Stone’s Theorem: Part I. A homomorphism u of R into the unitary group
U(H) of a Hilbert space H equipped with the strong operator topology is variously
called a one-parameter unitary group or a unitary representation. We’ll use the
former terminology since we are only concerned with the group R. We can also
think of u as defining a ∗-homomorphism, also denoted by u, of Cc(R) into B(H):

u(f) =

∫
R

f(r)ur dr.
27

The image of Cc(R) under u generates a commutative C∗-subalgebra of B(H)
which is isomorphic to C0(X) for second countable locally compact space X via the

Gelfand transform: T 7→ T̂ or u(f) 7→ û(f). We can decompose H into countably
many cyclic subspaces {Hi }i∈I with cyclic vector zi for u. For each i the map

T 7→ (Tzi | zi)

determines a positive linear functional on C0(X). Hence there is a Radon measure
µi on X such that(

u(f)zi | zi
)

=

∫
X

û(f)(x) dµi(x) for all f ∈ Cc(R).

Since (
u(f)zi | u(g)zi

)
=
(
u(g∗ ∗ f)zi | zi

)
=

∫
X

û(f)(x)û(g)(x) dµi(x),

u(f)zi 7→ û(f) induces a unitary isomorphism of Hi onto L2(X,µi) which inter-
twines the restriction of u(f) to Hi with multiplication by û(f). We can then
let Y = { (x, i) : x ∈ X and i ∈ I } be the disjoint union of suitably many copies
of X and let µ be the corresponding Radon measure on Y (induced by the µi)
so that H ∼=

⊕
i L

2(X,µi) is isomorphic to L2(Y, µ) via a unitary which inter-

twines u(f) and multiplication Mf̃ by a continuous function f̃ : Y → C given by

f̃(x, i) = û(f)(x).

27Since u is only strongly continuous, and not norm-continuous, it takes a bit more fussing
in order to make sense out of integrals of this type than we discussed, for example, in Section 6.
However, if v ∈ H, then r 7→ urv is continuous from R into H with its norm topology, and the

integral above is to be interpreted as

u(f)v =

∫
R
f(r)urv dr.
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If y ∈ Y , then f 7→ f̃(y) is a linear functional on Cc(R) such that

|f̃(y)| ≤ ‖f̃‖∞ = ‖u(f)‖ ≤ ‖f‖1.

Therefore the linear functional is bounded, and since, (f ∗ g)̃ (y) = f̃ g̃(y) =

f̃(y)g̃(y), it extends to a complex homomorphism on L1(R). Such things are always
given by integration against a character:

f̃(y) =

∫ ∞
−∞

f(r)e−ih(y)r dr.

Thus we obtain a function h : Y → R such that f̃(y) = f̂
(
h(y)

)
— where f̂ is the

Fourier transform of f . Since the f̂ generate the topology on R̂ = R, it follows
that h is continuous.

Since uru(f) = u
(
λ(r)f

)
, where λ(r)f(s) = f(s − r), and since

(
λ(r)f

)∧
(y) =

e−iry f̂(y), the isomorphism ofH with L2(Y, µ) intertwines ur with Me−irh(·) . There-
fore we think of ur as exp(−irA) where A is the “operator” Mh. The point is that
h is not usually a bounded function so that A is not bounded — in fact, A is not
even everywhere defined!

Nevertheless, we have sketched a proof of the following.

Theorem 7.1 (Stone’s Theorem (first half)). Let {ur }r∈R be a one-parameter
group of unitaries on H. Then there is a (second countable) locally compact space
Y and a Radon measure µ on Y together with a (possibly unbounded) continuous
real-valued function h on Y and a unitary of H onto L2(Y, µ) intertwining ur and
Meirh(·) .

Of course, the “operator” A = Mh corresponds to an “operator” of some kind
on the original Hilbert space H and we want to get our hands on these sorts of
operators.

Example 7.2. Let H = L2(R) and let u be the left-regular representation:

urf(s) = f(s− r).

In this case, we can identify Y with R and h(r) = r for all r ∈ R. Since (i dfdx )∧(r) =

rf̂(r), Mh corresponds to the operator i ddx .

7.2. Unbounded Operators. Motivated by T = d
dx on L2(R), we make the fol-

lowing definition.

Definition 7.3. A (possibly unbounded) operator in H is a linear map T : D(T ) ⊂
H → H, where D(T ) is a subspace of H.

Remark 7.4. We are usually only interested in densely defined operators — that is,
operators T where D(T ) is dense in H. More specifically, we want to know when
such an operator is (unitarily equivalent to) a multiplication operator such that
which arose in the previous subsection.

Example 7.5. Let h ∈ C(Y ) be a continuous function on a locally compact Hausdorff
space Y , let µ and be a Radon measure on Y and let Mh be the multiplication
operator on L2(Y, µ). Then the natural choice for D(Mh) is

D(Mh) = { f ∈ L2(Y, µ) : hf ∈ L2(Y, µ) }.
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Since Cc(Y ) ⊂ D(Mh), D(Mh) is dense. Furthermore, if f, g ∈ D(Mh), then
certainly g ∈ D(Mh̄) and

(Mhf | g) = (f |Mh̄g).

Suppose that g ∈ L2(Y, µ) is such that

f 7→ (Mhf | g)

is continuous on D(Mh). Since the map is linear and continuous, it is bounded,
and therefore extends to a bounded linear functional on L2(Y, µ). Therefore the
Riesz Representation Theorem implies that there is a g′ ∈ L2(Y, µ) such that

(Mhf | g) = (f | g′) for all f ∈ D(Mh).

Let Φ be the linear functional on Cc(Y ) ⊂ L2(Y, µ) given by integration against
the function Mh̄g. Then

Φ(g) = (f |Mh̄g)

= (Mhf | g)

= (f | g′)
≤ ‖f‖2‖g′‖2.

Thus Φ determines a bounded linear functional on L2(Y, µ) that agrees with inte-
gration against g′ on a dense subspace. Hence Mh̄g = g′ (in L2), and g ∈ D(Mh̄) =
D(Mh). �

Definition 7.6. Let T be a densely defined operator in H. Let

D(T ∗) = {h ∈ H : v 7→ (Tv | h) is continuous }.

If h ∈ D(T ∗) then we define T ∗h to be the unique vector in H such that

(Tv | h) = (v | T ∗h) for all v ∈ D(T ).

Example 7.7. As we saw in Example 7.5 on the preceding page, D(Mh) = D(M∗h)
and M∗h = Mh̄. So if h is real-valued, then M∗h = Mh and it makes sense to call
Mh self-adjoint.

Definition 7.8. A densely defined operator T in H is called self-adjoint if T ∗ = T .
That is, D(T ∗) = D(T ) and (Th | k) = (h | Tk) for all h, k ∈ D(T ).

Example 7.9. Let H = L2(R). We want to define Tf := if ′. It is not unnatural to
guess that we should take

D(T ) := { f ∈ L2(R) : f ′ exists almost everywhere and f ′ ∈ L2(R) }.

Suppose that g ∈ D(T ∗) and let g0 := T ∗g. If f ∈ D(T ), then there are step
functions { fn } such that fn → f in L2(R).28 But then

(Tf | g) = (f | g0)

= lim
n

(fn | g0)

= lim
n

(Tfn | g)

= 0.

28A step function is a linear combination of characteristic functions of bounded intervals.
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Since Cc(R) ⊂ T
(
D(T )

)
, we must have g = 0. Therefore D(T ∗) = { 0 }! In

particular, (T,D(T )) is not (unitarily equivalent to) a multiplication operator.29

Remark 7.10. Suppose that T is any densely defined operator in H. Let {hn } be
a sequence in D(T ∗) such that hn → h and T ∗hn → w. Let v ∈ D(T ). Then

(Tv | h) = lim
n

(Tv | hn)

= lim
n

(v | T ∗hn)

= (v | w).

Therefore h ∈ D(T ∗) and T ∗h = w. In sum, the graph of T ∗,

G(T ∗) := { (h, T ∗h) ∈ H ×H : h ∈ D(T ∗) },

is closed in H×H.

Definition 7.11. We say that an operator T in H is closed if its graph

G(T ) := { (h, Th) ∈ H ×H : h ∈ D(T ) }

is closed in H×H.

From Remark 7.10, we have the following result.

Lemma 7.12. If T is any densely defined operator in H, then (T ∗,D(T ∗)) is a
closed operator.

Definition 7.13. If S and T are operators in H, then we say that T extends S if
D(S) ⊂ D(T ) and T |D(S) = S.

Remark 7.14. Notice that T extends S if and only if G(S) ⊂ G(T ). In particular,
if S has a closed extension, then it has a smallest such.

Definition 7.15. An operator T in H is called closable if it has a closed extension.
The smallest such extension is denoted by T .

The proof of the next result is left as an exercise.

Lemma 7.16. An operator T in H is closable if and only if G(T ) is the graph of

an operator. If T is closable, then G(T ) = G(T ).

Example 7.17. Let H = L2(R) and T = i ddx be as in Example 7.9 on the facing

page. If f ∈ D(T ), then there are step functions fn → f in L2(R). Therefore

(f, 0) ∈ G(T ). But so is (f, f ′). Since G(T ) is a subspace, (0, f ′) ∈ G(T ). Therefore

G(T ) = H×H. Thus, T is “way not closable”.

Definition 7.18. An operator T in H is called symmetric if T ⊂ T ∗.

Example 7.19. A symmetric operator is always closable.

Proposition 7.20. A densely defined operator T in H is closable if and only if

D(T ∗) is dense. If T is closable, then T = T ∗∗ and T
∗

= T ∗.

29It is interesting to note that if we alter D(T ) so that f is absolutely continuous, then T is
self-adjoint [8, §13, Problem 8a]. (Absolute continuity for a function on all of R is defined in [3].
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Proof. Notice that (h,w) ∈ G(T ∗) if and only if (Tv | h) = (v | w) for all v ∈ D(T ).
This happens if and only if

(
(−Tv, v) | (h,w)

)
= 0 for all v ∈ D(T ). So we define

a unitary operator V : H×H → H×H by V (h, k) := (−k, h). Then

(h,w) ∈ G(T ∗)⇐⇒ (h,w) ∈ V
(
G(T )

)⊥
and therefore(7.1)

G(T ∗) = V
(
G(T )

)⊥
.(7.2)

Now if D(T ∗) is dense, then T ∗∗ is defined and

G(T ∗∗) = V
(
G(T ∗)

)⊥
= V

(
V
(
G(T )

)⊥)⊥
.

Since V is unitary and V 2 = −I, and since we certainly have G(T ) = G(T )⊥⊥, you
can check that

V
(
V
(
G(T )

)⊥)⊥
= G(T )⊥⊥ = G(T ).

Therefore G(T ) is the graph of an operator, and T = T ∗∗ (Lemma 7.16 on the
previous page). We’ve proved half of the first statement and the first part of the
second.

But, assuming T exists,

G(T ∗) = V
(
G(T )

)⊥
= V

(
G(T )

)⊥
= V

(
G(T )

)⊥
= G(T

∗
).

This proves the second part of the second statement.
Now suppose that T exists. Suppose that w ∈ D(T ∗)⊥ and v ∈ D(T ∗). Then(

(0, w) | V (v, T ∗v)
)

=
(
(0, w) | (−T ∗v, v)

)
= (w | v)

= 0.

Thus (0, w) ∈ V
(
G(T ∗)

)⊥
= V

(
V
(
G(T )

)⊥)⊥
= G(T ) = G(T ). Therefore, w = 0

and D(T ∗) is dense. �

As a corollary of (7.2) we have the following.

Corollary 7.21. Suppose that T and S are operators in H such that T ⊂ S. Then
S∗ ⊂ T ∗.

Proof. If T ⊂ S, then G(T ) ⊂ G(S). Therefore V
(
G(T )

)
⊂ V

(
G(S)

)
, and we must

have V
(
G(T )

)⊥ ⊃ V (G(S)
)⊥

. Therefore G(S∗) ⊂ G(T ∗). �

Proposition 7.22. Suppose that T is a self-adjoint operator in H. If S is a
symmetric operator in H and if T ⊂ S, then T = S.

Proof. T ⊂ S ⊂ S∗ ⊂ T ∗ = T . �
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Example 7.23 (Variations on i ddx — taken from [8, Example 13.4]). Let H =

L2([0, 1]). Note that L2([0, 1]) ⊂ L1([0, 1]). Also recall that f is absolutely contin-
uous30 on [0, 1] if f is continuous, f ′ exists almost everywhere and

f(x) = f(0) +

∫ x

0

f ′(t) dt for all x ∈ [0, 1].

Furthermore, we have the following.
Let Tk be i ddx with the domain

D(T1) = { f ∈ L2([0, 1]) : f is absolutely continuous and f ′ ∈ L2([0, 1]) }.
D(T2) = { f ∈ D(T1) : f(0) = f(1) }
D(T3) = { f ∈ D(T2) : f(0) = f(1) = 0 }.

Thus T3 ⊂ T2 ⊂ T1. I claim that

T ∗1 = T3, T ∗2 = T2, and T ∗3 = T1.

In particular, each Tk is closed, T2 is self-adjoint, T3 is symmetric, and T1 is not
symmetric and has no symmetric extension.

Proof. For the proof, we need this chestnut.

Claim 1. If f and k are absolutely continuous on [0, 1], then∫ 1

0

f ′(x)k(x) dx+

∫ 1

0

f(x)k′(x) dx = f(1)k(1)− f(0)k(0).

Proof. See [6, §26]. Also, note that d
dx

(
f(x)k(x)

)
= f ′(x)k(x) + f(x)k′(x) for

almost all x. �

Using this, we see that for f and g absolutely continuous and f ∈ D(Tk) we have

(Tkf | g) =

∫ 1

0

if ′g

= −
∫ 1

0

ifg′ + f(1)g(1)− f(0)g(0)

=

∫ 1

0

fig′ + f(1)g(1)− f(0)g(0).

From this, we quickly deduce that

(7.3) T ∗3 ⊂ T1, T ∗2 ⊂ T2, and T1 ⊂ T ∗3 .
Now let g ∈ D(Tk), h = Tkg and H =

∫ x
0
h. Then if f ∈ D(T k),∫ 1

0

if ′g = (Tkf | g) = (f | h) = f(1)H(1)−
∫ 1

0

f ′h.

If k = 1 or k = 2, then D(Tk) contains the constant functions and we deduce that
in both those cases H(1) = 0. When k = 3, then f(1) = 0. Thus in all cases,
(Tk | ig) = (Tkf | H), and

(7.4) ig −H ∈ Range(Tk)⊥.

30I am using a bit of classical measure theory here. For the precise definition of absolute

continuity see [7, Chap. 5, §4]. In fact, it would wise to have a look at all of [7, Chap. 5, §3 & §4].
The key results are Theorem 14 and Corollary 15 of §4 of [7, Chap. 5].
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If k = 1, then Range(T1) is all of L2 so we get ig = H. Then ig′ = h and since
H(1) = 0, g ∈ D(T3). This shows that T ∗1 ⊂ T3. Combined with (7.3), this shows
T3 = T ∗1 .

If k = 2 or k = 3, then Range(Tk) = {u ∈ L2 :
∫ 1

0
u = 0 }. Then (7.4) tells us

that ig −H is a constant. In particular, we again have ig′ = h. Furthermore, this
also says that g is absolutely continuous. Hence g ∈ D(T1). Thus T ∗3 ⊂ T1. Again,
(7.3) now implies equality.

If k = 0, we saw earlier that we also have H(1) = 0. Hence g(0) = g(1), and
g ∈ D(T2). Then T ∗2 ⊂ T2. And we’re done. �

Remark 7.24 (Uniqueness). We just proved that the symmetric operator T3 has a
self-adjoint extension — namely T2. Are there others? The answer appears to be
yes, lots. Jody Trout pointed me to [2, Example 2.2.1] as well as some notes online.

7.3. The Spectrum. We want to define the spectrum σ(T ) of an operator in H.
Again, we look to the case of multiplication operators for guidance.

Example 7.25. Let h : X → C be a measurable function and consider the multipli-
cation operator Mh on L2(X,µ) (for some Radon measure µ on the locally compact
Hausdorff space X). We define the essential range of h to be the set of λ such that
µ
(
h−1

(
Bε(λ)

))
> 0 for all ε > 0. Then the essential range is a closed subset of C,

and if λ is not in the essential range, then 1
λ−h is in L∞ and defines a bounded

operator M(λ−h)−1 on L2(X).

Definition 7.26. If T is an operator in H, then λ ∈ C belongs to the resolvent
ρ(T ) of T if λI − T is a bijection of D(T ) onto H and (λI − T )−1 ∈ B(H). The
spectrum σ(T ) of T is the complement of ρ(T ).

Remark 7.27. If λ ∈ ρ(T ), then (λI − T )−1 is a bounded operator and therefore
has closed graph. Then λI − T must also have a closed graph, so T must be
a closed operator. Therefore if T is not closed, then ρ(T ) = ∅. On the other
hand, if T is a closed operator and if λI − T is a bijection of D(T ) onto H, then
(λI − T )−1 is necessarily a bounded operator by the closed graph theorem, and
λ ∈ ρ(T ). (Therefore the condition that (λI − T )−1 ∈ B(H) can be dropped from
Definition 7.26 when T is closed to begin with — which is the only case of interest.)

Example 7.28. Suppose that T and S are closed operators in H. In order to define
a densely defined operator from their sum, T + S, it is necessary to assume that
D(T ) ∩ D(S) is dense. However, even so, it does not follow that S + T need be
closed. For example, let S = −T , then S + T = 0|D(T ) which is certainly not

closed.31

Definition 7.29. If T is a closed operator in H and if λ ∈ ρ(T ), then we write

R(λ, T ) = (λI − T )−1.

Theorem 7.30. If T is a closed operator in H, then ρ(T ) is open in C and λ 7→
R(λ, T ) is a (strongly) analytic function on ρ(T ). Furthermore,

(7.5) R(λ, T )−R(λ0, T ) = −(λ− λ0)R(λ, T )R(λ0, T ).

In particular, {R(λ, T ) }λ∈ρ(T ) is a commutative set.

31It is worth remarking that a densely defined bounded operator can never be closed unless its
domain is all of H.
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Proof. Note that we trivially have

R(λ, T ) = R(λ, T )(λ0I − T )R(λ0, T ), and

R(λ0, T ) = R(λ, T )(λI − T )R(λ0, T ).

Subtracting, we get (7.5).
Suppose that λ0 ∈ ρ(T ). For all |λ− λ0| < ‖R(λ0, T )‖−1, we can define

S(λ, T ) := R(λ0, T )

∞∑
n=0

(−1)n(λ− λ0)nR(λ0, T )n.

It is helpful to note that S(λ, T ) = (I + (λ− λ0)R(λ0, T ))−1.
Clearly, λ 7→ S(λ, T ) is strongly analytic and S(λ, T ) maps H into D(T ). Now

using (7.5), you can check that

(λI − T )S(λ, T ) = I and S(λ, T )(λI − T ) = I|D(T ).

Therefore, λ ∈ ρ(T ) and S(λ, T ) = R(λ, T ). This suffices. �

Example 7.31. Let T = i ddx and let

D(T ) = { f ∈ L2([0, 1]) : f is absolutely continuous and f ′ ∈ L2([0, 1]) }.

Then as we showed in Example 7.23 on page 32, T is a closed operator. However, for
any λ ∈ C, (λI − T )e−iλx = 0, Therefore (λI − T ) is never bijective and ρ(T ) = ∅.
(And σ(T ) = C.)

Example 7.32. With the same set up as Example 7.31, but let

D(T ) = { f ∈ L2([0, 1]) : f is absolutely continuous, f ′ ∈ L2 and f(0) = 0 }.

For each λ ∈ C, define

Sλf(x) :=

∫ x

0

e−iλ(x−t)f(t) dt.

Then it is not hard to check that

(λI − T )Sλ = I and Sλ(λI − T ) = I|D(T).

Therefore in this case ρ(T ) = C and σ(T ) = ∅.

Remark 7.33. I’m told that any closed subset of C can be the spectrum of a closed
operator in H (provided H is infinite dimensional).

Theorem 7.34. Suppose that T is a symmetric operator in H. Then the following
statements are equivalent.

(a) T is self-adjoint.
(b) T is closed and for all λ ∈ C \R, ker(T ∗ − λI) = { 0 }.
(c) T is closed and ker(T ∗ ± iI) = { 0 }.
(d) For all λ ∈ C \R, Range(T − λI) = H.
(e) Range(T ± iI) = H.
(f) σ(T ) ⊂ R.
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Proof. We’ll show that

(b)

�� �$

(f)ks (b) & (d)ks

(a)

:B

(c)

��

(d)

z�
(e)

\d

(a) =⇒ (b): We have T = T ∗, and T is closed. If v ∈ ker(T −λI), then Tv = λv
and

λ(v | v) = (Tv|v) = (v|Tv) = λ̄(v | v).

Therefore v = 0 if λ 6= λ̄.
(b) =⇒ (c): Easy.
(b) =⇒ (d): Suppose that v ∈ Range((T − λI))⊥. Then

(
(T − λI)w | v

)
= 0 for

all w ∈ D(T ). Thus v ∈ D((T − λI)∗)−D(T ∗). Thus for all w ∈ D(T ),

0 =
(
(T − λI)w | v

)
=
(
w | (T ∗ − λ̄)v

)
.

Since D(T ) is dense, v ∈ ker(T ∗ − λ̄I). Since the later is trivial by assumption,
T − λI has dense range for all λ /∈ R.

If λ = a+ ib and if v ∈ D(T ), then(
(T − λI)v | (T − λI)v

)
=
(
(T − aI)v − ibv | (T − aI)v − ibv

)
= ‖(T − aI)v‖2 +

(
(T − aI)v | −ibv

)
+
(
−ibv | (T − aI)v

)
+ |b|2‖v‖2.

Since (T − aI) ⊂ (T − aI)∗, the middle terms cancel, and we have

(7.6) ‖(T − λI)v‖2 = ‖(T − aI)v‖2 + |b|2‖v‖2.

If w ∈ H, then since the range of T − λI is dense, there must be vn ∈ D(T ) such
that (T − λI)vn → w. Then (7.6) (applied to vn − vm) and b 6= 0 implies that
{ vn } is Cauchy — say, vn → v. Since T − λI is a closed operator, v ∈ D(T ) and
(T − λI)v = w. This proves (d).

(d) =⇒ (e): Clear.
(e) =⇒ (a): We have D(T ) ⊂ D(T ∗) by assumption, so we only need to prove

the reverse containment. Let v ∈ D(T ∗). By assumption, there is a w ∈ D(T ) such
that

(T − iI)w = (T ∗ − iI)v.

But we also have w ∈ D(T ∗) so (T ∗ − iI)(w − v) = 0. If h ∈ H, then there is a
h′ ∈ D(T ) with (T + iI)h′ = h. Therefore

(h | w − v) =
(
(T + iI)h′ | w − v

)
=
(
h′ | (T ∗ − iI)(w − v)

)
= 0.

Since h is arbitrary, w = v, and w ∈ D(T ). This proves (a).
(f) =⇒ (b): If λ /∈ R, then λ ∈ ρ(T ). Therefore T is closed and (T − λI) is a

bijection. In particular, (T − λI) has trivial kernel.
(c) =⇒ (e): Just as in (b) =⇒ (d).
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Finally, (b) and (d) together with the closed graph theorem, imply that C\R ⊂
ρ(T ). Therefore σ(T ) ⊂ R. This completes the proof. �

Theorem 7.35 (Spectral Theorem for Unbounded Self-Adjoint Operators). Sup-
pose that T is a self-adjoint operator in H. Then there is a locally compact space
Y , a Radon measure µ, a continuous function h : Y → R and a unitary U : H →
L2(Y, µ) such that

(a) UD(T ) = D(Mh) := { f ∈ L2(Y, µ) : hf ∈ L2(Y, µ) } and
(b) UTv = MhUv for all v ∈ D(T ).

Proof. Theorem 7.34 on page 35 implies that R(±i, T ) are well-defined bounded
operators on H. Since R(±i, T ) = (±iI − T )−1, we have(

R(i, T )(iI − T )v | (−iI − T )w
)

=
(
(iI − T )v | R(−i, T )(−iI − T )w

)
.

Since Theorem 7.34 also gives us (±iI−T )D(T ) = H, we have shows that R(i, T )∗ =
R(−i, T ). Since R(i, T ) and R(−i, T ) commute (Theorem 7.30 on page 34), R(i, T )
is normal. Hence R(i, T ) generates a commutative C∗-algebra A ⊂ B(H). Since
R(i, T )H = D(T ), it follows that the identity representation of A on B(H) is
nondegenerate. Thus we can decompose H into cyclic subspaces as in Section 7.1
on page 28. Therefore we obtain a locally compact space Y and a Radon measure
µ such that there is a unitary U : H → L2(Y, µ) intertwining R(i, T ) and Mg for a
bounded continuous function g : Y → C.

Since ker
(
R(i, T ))

)
= { 0 }, the closed set

C := { y ∈ Y : g(y) = 0 }

is a µ-null set. Thus we can replace Y by Y \ C (which is still locally compact),
and assume that g never vanishes. Let

h := i− 1

g
.

Then h is continuous on Y , but may no longer be bounded.
If v ∈ D(T ), then since R(i, T )H = D(T ), there is a w ∈ H such that R(i, T )w =

v. Now

hUv = hUR(i, T )w = hgUw = (i− 1

g
)gUw = (ig − 1)Uw,

and the later is in L2(Y, µ). This shows that

UD(T ) ⊂ D(Mh).

Furthermore,

U(iI − T )U∗Uv = U(iI − T )U∗UR(i, T )w = Uw and

M(i−h)Uv = M(i−h)UR(i, T )w = Uw.

Therefore U(iI − T )U∗ ⊂M(i−h), and UTU∗ ⊂Mh. But then

M∗h = Mh̄ ⊂ UT ∗U∗ = UTU∗ ⊂Mh.

Since D(Mh) = D(Mh̄), we have UTU∗ = Mh = Mh̄. In particular, h must be
real-valued and UD(T ) = D(Mh). �
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Corollary 7.36 (Functional Calculus for Unbounded Self-Adjoint Operators).
Suppose that T is a self-adjoint operator in H. Then there is a ∗-homomorphism
Φ from the the bounded Borel functions on R (viewed a C∗-algebra with respect to
the supremum norm) into B(H) such that Φ(r±) = R(±i, T ), where

r±(x) :=
1

±i− x
.

Proof. In view of Theorem 7.35 on the previous page, we may as well assume that
T = Mh on L2(Y, µ) for a continuous function h : Y → R. Examining the proof of
Theorem 7.35 shows that R(i, T ) is given by Mg where g = 1/(i−h). Suppose that
F is a bounded Borel function on R. Then F ◦h is a bounded Borel function on Y
and MF◦h is a bounded operator on L2(Y, µ) with norm bounded by the essential
supremum of F ◦ h. Φ(F ) = MF◦h, then Φ is clearly a ∗-homomorphism.

If we let F = r+, then we have F ◦ h = g, so Φ(r+) = R(i, T ). Since R(−i, T ) =
R(i, T )∗, we must also have Φ(r−) = Φ(r+) = Φ(r+)∗ = R(−i, T ), and we are
done. �

To conclude this section, we look at the converse of Theorem 7.1 on page 29.
This will also serve as another example of the functional calculus at work.

Theorem 7.37 (Stone’s Theorem (the rest of the story)). Suppose that T is a
self-adjoint operator in H. Then ur := eirT (that is, ur = Φ(t 7→ eirt)) defines a
one-parameter group of unitaries on H. Moreover

(a) D(T ) = { v ∈ H : limr→0
1
r (urv − v) exists }, and

(b) for all v ∈ D(T ),

lim
r→0

urv − v
r

= iTv.

Proof. We can assume that T = Mh on L2(Y, µ), and hence that ur = Meirh(·) . We
certainly see that each ur is unitary and that ur+s = urus. We need to see that
r 7→ ur is strongly continuous. But if f ∈ L2(Y ) and if rn → r, then

eirnh(y)f(y)→ eirh(y)f(y)

pointwise, and each term is dominated by |f | ∈ L2(Y ). Hence we get convergence
in L2 via the dominated convergence theorem. (This is a good exercise.)

Now suppose that f ∈ D(T ). Then

urf − f
r

=
(eirh(·) − 1

r

)
f(·).

There is a M > 0 such that∣∣∣eis − 1

s

∣∣∣ ≤M for all s ∈ R.

Hence, ∣∣∣eirt − 1

t

∣∣∣ ≤Mt for all r ∈ R.

But then ∣∣∣eirh(y) − 1

r
f(y)

∣∣∣ ≤M |h(y)||f(y)|.

But |hf | ∈ L2(Y ). So the dominated convergence theorem implies that

urf − f
r

→ ihf = iT (f) in L2(Y ).o
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Conversely, suppose that

(7.7) lim
r

urf − f
r

= lim
r

(eirh(·) − 1

r

)
f(·)

converges (in L2(Y )) to g. Since the right-hand side of (7.7) converges pointwise
to ihf , we must have g = ihf in L2(Y ). Therefore hf ∈ L2(Y ) and f ∈ D(T ) =
D(Mh). �
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