Main Results (so far)

Let F be a field of characteristic not 2, and (V, B) a quadratic space over F. Some important results:

- (I.1.3 Lam) If V is regular, and U any subspace, then
 - 1. dim $V = \dim U + \dim U^{\perp}$.
 - 2. $(U^{\perp})^{\perp} = U$.
- (I.2.3 Lam) (Representation Criterion) Let (V, B) be a quadratic space and $d \in \dot{F}$. Then $d \in D(V)$ if and only if there exists another quadratic space (V', B') together with an isometry $V \cong \langle d \rangle \perp V'$.
- (I.2.4 Lam) Orthogonal diagonalization of (V, B).
- (I.2.5 Lam) If (V, B) is a quadratic space (not necessarily regular), and U is a regular subspace, then
 - 1. $V = U \perp U^{\perp}$.
 - 2. If W is a subspace with $V = U \perp W$, then $W = U^{\perp}$.
- (I.2.6 Lam) If V is regular, then a subspace $U \subseteq V$ is regular if and only if there exists a subspace W of V with $V = U \perp W$.

Remarks:

- 1. There are easy counterexamples if V is not regular (split the radical).
- 2. We can prove the following proposition: If U is a subspace of a quadratic space V (not necessarily regular), then if $V = U \perp U^{\perp}$, then U is regular. This gets around V being regular in I.2.6, at the expense of specifying $W = U^{\perp}$. *Proof:* $\operatorname{rad}(U) = \operatorname{rad}_U(U) \subset U \cap U^{\perp} = \{0\}.$
- Any representation $\varphi: V \to W$ with V regular is injective.
- (42.8 O'Meara) Let V and W be quadratic spaces with radical splittings, $V = V^{\perp} \perp V_1$ and $W = W^{\perp} \perp W_1$. Then
 - 1. There is a representation $V \to W$ if and only if there is a representation $V_1 \to W_1$.
 - 2. $V \cong W$ if and only if $V^{\perp} \cong W^{\perp}$ and $V_1 \cong W_1$.

- (3.2 Lam) Let V be a binary quadratic space over a field F. The following are equivalent:
 - 1. V is a hyperbolic plane, i.e., $V \cong \mathbb{H} \cong \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
 - 2. V is isotropic and regular.
 - 3. dV = -1.
- (2.25 Gerstein)
 - 1. A hyperplane plane is universal.
 - 2. If V is regular and isotropic, then it is split by a hyperbolic plane, that is $V \cong H \perp V'$ where $H \cong \mathbb{H} \cong \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
- (2.43. Gerstein, 3.4 Lam) Let V be a regular quadratic space and $U \subseteq V$ a totally isotropic subspace with basis $\{u_1, \ldots, u_r\}$. Then there is an orthogonal splitting of V: $V \cong H_1 \perp \cdots \perp H_r \perp V'$ with $H_i \cong \mathbb{H}$ and $u_i \in H_i$. In particular, dim $U \leq \frac{1}{2} \dim V$.
- (2.27 Gerstein, 3.5 Lam) [The Representation Theorem] Let V be a regular quadratic space, and $\alpha \in \dot{F}$. Then $\alpha \to V$ if and only if $V \perp \langle -\alpha \rangle$ is isotropic.