Main Results (so far)

Let F be a field of characteristic not 2 , and (V, B) a quadratic space over F. Some important results:

- (I.1.3 Lam) If V is regular, and U any subspace, then

1. $\operatorname{dim} V=\operatorname{dim} U+\operatorname{dim} U^{\perp}$.
2. $\left(U^{\perp}\right)^{\perp}=U$.

- (I.2.3 Lam) (Representation Criterion) Let (V, B) be a quadratic space and $d \in \dot{F}$. Then $d \in D(V)$ if and only if there exists another quadratic space $\left(V^{\prime}, B^{\prime}\right)$ together with an isometry $V \cong\langle d\rangle \perp V^{\prime}$.
- (I.2.4 Lam) Orthogonal diagonalization of (V, B).
- (I.2.5 Lam) If (V, B) is a quadratic space (not necessarily regular), and U is a regular subspace, then

1. $V=U \perp U^{\perp}$.
2. If W is a subspace with $V=U \perp W$, then $W=U^{\perp}$.

- (I.2.6 Lam) If V is regular, then a subspace $U \subseteq V$ is regular if and only if there exists a subspace W of V with $V=U \perp W$.

Remarks:

1. There are easy counterexamples if V is not regular (split the radical).
2. We can prove the following proposition: If U is a subspace of a quadratic space V (not necessarily regular), then if $V=U \perp U^{\perp}$, then U is regular.
This gets around V being regular in I.2.6, at the expense of specifying $W=U^{\perp}$. Proof: $\operatorname{rad}(U)=\operatorname{rad}_{U}(U) \subset U \cap U^{\perp}=\{0\}$.

- Any representation $\varphi: V \rightarrow W$ with V regular is injective.
- (42.8 O'Meara) Let V and W be quadratic spaces with radical splittings, $V=V^{\perp} \perp V_{1}$ and $W=W^{\perp} \perp W_{1}$. Then

1. There is a representation $V \rightarrow W$ if and only if there is a representation $V_{1} \rightarrow W_{1}$.
2. $V \cong W$ if and only if $V^{\perp} \cong W^{\perp}$ and $V_{1} \cong W_{1}$.

- (3.2 Lam) Let V be a binary quadratic space over a field F. The following are equivalent:

1. V is a hyperbolic plane, i.e., $V \cong \mathbb{H} \cong\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
2. V is isotropic and regular.
3. $d V=-1$.

- (2.25 Gerstein)

1. A hyperplane plane is universal.
2. If V is regular and isotropic, then it is split by a hyperbolic plane, that is $V \cong$ $H \perp V^{\prime}$ where $H \cong \mathbb{H} \cong\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

- (2.43. Gerstein, 3.4 Lam) Let V be a regular quadratic space and $U \subseteq V$ a totally isotropic subspace with basis $\left\{u_{1}, \ldots, u_{r}\right\}$. Then there is an orthogonal splitting of V : $V \cong H_{1} \perp \cdots \perp H_{r} \perp V^{\prime}$ with $H_{i} \cong \mathbb{H}$ and $u_{i} \in H_{i}$. In particular, $\operatorname{dim} U \leq \frac{1}{2} \operatorname{dim} V$.
- (2.27 Gerstein, 3.5 Lam) [The Representation Theorem] Let V be a regular quadratic space, and $\alpha \in \dot{F}$. Then $\alpha \rightarrow V$ if and only if $V \perp\langle-\alpha\rangle$ is isotropic.

