Dartmouth College

Mathematics 115 - Practice Problems 1

1. Let $V=M_{n}(F)$ viewed as a quadratic space of dimension n^{2} over F with bilinear form $B(X, Y)=\operatorname{tr}(X Y)$, where tr is the trace of the $n \times n$ matrix. Find an orthogonal basis for (V, B) to conclude that $V \cong n\langle 1\rangle \perp m \mathbb{H}$ where $m=(n(n-1)) / 2$.
2. Let $V=M_{n}(F)$ viewed as a quadratic space of dimension n^{2} over F with bilinear form $B^{\prime}(X, Y)=\operatorname{tr}\left(X Y^{t}\right)$, where tr is the trace of the $n \times n$ matrix, and Y^{t} the transpose of Y. Find an orthogonal basis for $\left(V, B^{\prime}\right)$ to conclude that $V \cong n^{2}\langle 1\rangle$.
3. Let $\alpha, \beta \in \dot{F}=F^{\times}$and (V, B) a regular quadratic space. Show that

$$
-\beta \rightarrow V \perp\langle\alpha\rangle \Longleftrightarrow-\alpha \rightarrow V \perp\langle\beta\rangle .
$$

4. Let $\alpha, \beta \in F$ with $\alpha^{2}+\beta^{2}=\gamma \neq 0$. Show that the four-dimensional form $V=$ $\langle 1,1,-\gamma,-\gamma\rangle$ is hyperbolic (i.e., $V \cong \mathbb{H} \perp \mathbb{H}$.)
5. Show that the following are equivalent:
(a) Every 4-dimensional quadratic space over F with discriminant -1 is isotropic.
(b) Every even dimensional quadratic space over F with discriminant -1 is isotropic.
(c) Every 3-dimensional quadratic space V over F represents its own discriminant.
(d) Every odd dimensional quadratic space V over F represents its own discriminant.
