Dartmouth College

Mathematics 115 - Practice Problems 3

1. Let $|\cdot|$ be a non-archimedean valuation on a field F. Given three distinct points $\alpha, \beta, \gamma \in F$, show that the "triangle" they determine is isosceles. Here the length of the side between α and β is $|\alpha-\beta|$.
2. Let $|\cdot|$ be a non-archimedean valuation on a field F. For $\epsilon>0$ a real number, and $\alpha \in F$, let $B_{\epsilon}(\alpha)=\{\gamma \in F:|\gamma-\alpha|<\epsilon\}$. Let $\beta \in B_{\epsilon}(\alpha)$. Show that $B_{\epsilon}(\alpha)=B_{\epsilon}(\beta)$, that is every point in an open disk is the center of the disk.
3. Let $|\cdot|$ be a valuation on a field F. Show that for any real number $0<\rho \leq 1,|\cdot|^{\rho}$ is also a valuation. Show that this can be false if $\rho>1$.
4. Determine the canonical 3 -adic representation of $-\frac{13}{8}$. To be sure you are on the right track, it has the form

$$
-\frac{13}{8}=1+1 \cdot 3+2 \cdot 3^{2}+\sum_{k=3}^{\infty} c_{k} 3^{k}
$$

