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1 STATEMENT OF THE PROBLEM

Our goal is to introduce how derivatives can be approximated by using difference quotients.

Suppose we have an interval [a,b] ⊂ R. Let a = x0 < x1 < ·· · < xN−1 < xN = b be a partition. We call
{x1, . . . , xN−1} the interior points, and {x0, xN } the boundary. Given a function f : [a,b] → R, we want
to approximate the derivative f ′ using our partition.

2 DIFFERENCE QUOTIENTS

2.1 DEFINITION

Based on the usual definition of the derivative, we can define an example of a difference quotient
known as the forward difference.

(Definition) Forward Difference

D+ fi = f (xi+1)− f (xi )

xi+1 −xi
(2.1)

There are a multitude of ways to define difference quotients. For example, we can also define the
backward difference.

(Definition) Backward Difference

D− fi = f (xi )− f (xi−1)

xi −xi−1
(2.2)

2.2 APPROXIMATING THE DERIVATIVE

We want to know how well these approximate the derivative of f in our problem statement. Consider,
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D+ fi = f (xi +∆xi )− f (xi )

∆xi
(2.3)

∆xi = xi+1 −xi . (2.4)

We can Taylor expand D+ fi at a point xi ,

D+ fi = 1

∆xi

(
f (xi )+ f ′(xi )∆xi + 1

2
f ′′(xi )∆x2

i +O (∆x3
i )− f (xi )

)
= f ′(xi )+ 1

2
f ′′(xi )∆xi +O (∆x2

i ).

(2.5)

We are left with an error, O (∆xi ), that is first order in∆xi . The same holds if we repeat this with D− fi .
Next, we want to modify this procedure to get an estimate that is better than O (∆x) in error.

2.3 IMPROVING THE ESTIMATE

We can improve the estimate by using a difference quotient in the form of D fi = ∑
j a j f j . The idea

here is to use contraints in order to make the f (xi ), f ′(x)∆xi etc terms disappear in the Taylor expan-
sion.

We illustrate this idea with an example that improves the previous error to O (∆x2
i ). Consider a f (xi +

∆xi )+b f (xi )+c f (xi −∆xi−1). When we Taylor expand each of the f (·) term at the appropriate point,
we get,

f (xi +∆xi ) = f (xi )+ f ′(xi )∆xi + 1

2
f ′′(xi )∆x2

i +
1

6
f ′′′(xi )∆x3

i +·· ·
f (xi ) = f (xi )

f (xi −∆xi−1) = f (xi )− f ′(xi )∆xi−1 + 1

2
f ′′(xi )∆x2

i−1 −
1

6
f ′′′(xi )∆x3

i−1 +·· · .

(2.6)

This gives us a system of linear equations,

a +b + c = 0,

a∆xi +0− c∆xi−1 = 0,

a∆x2
i +0+ c∆x2

i−1 = 0.

(2.7)

In matrix notation, we have,

 1 1 1
∆xi 0 −∆xi−1

∆x2
i 0 ∆x2

i−1

a
b
c

=
0

1
0

 . (2.8)

This gives us the difference quotient, D fi = ∆xi−1
∆x D+ fi + ∆xi

∆x D− fi . In fact, we can approximate to
whatever order we want by using this process.

If we let the length between each point of the partition be a constant h, i.e. ∆xi = h, then we have
f (x+h)− f (x−h)

2h , which is the centered difference.
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2.4 APPROXIMATING THE nTH DERIVATIVE

Now, suppose we want Dn fi with error O (∆x2). With uniform spacing, i.e. ∆xi = h, we can keep
applying our previous step.

D fi = 1

2h

(
f (x +h)− f (x −h)

)
,

D2 fi = D

[
1

2h

(
f (x +h)− f (x −h)

)]
,

= 1

(2h)2

(
f (x +2h)− f (x)− f (x)+ f (x −2h)

)
,

= 1

(h′)2

(
f (x +h′)−2 f (x)+ f (x −h′)

)
,

(2.9)

where h′ = 2h. For an arbitrary even n, we have the formula,

Dn fi = 1

hn

n∑
m=0

(
n

m

)
(−1)m fi+( n

2 −m). (2.10)

3 ACCURACY OF THE APPROXIMATION

3.1 EXAMPLE: POISSON’S EQUATION

We consider Poisson’s Equation: ∇2 f = g . In one dimension, this is just d 2 f
d x2 = g . We turn this into

a finite difference equation by considering the centered difference quotient, fi+1−2 fi+ fi−1

h2 = gi . i.e.

D2 fi = 1
h2

(
f (x +h)−2 f (x)+ f (x −h)

)
.

Now, if our partition is {x0, x1, . . . , xN−1, xN }, there are N +1 points including the boundary. Excluding
the boundary points, this is a N −1 dimensional system of equations,

1

h2


−2 1 0 · · · 0
1 −2 1 · · · 0

0 1 −2
. . .

...
0 0 0 · · · −2




f1

f2
...

fN−1

=


g1 − α

h2

g2
...

gN−1 − β

h2

 . (3.1)

Note that this is similar to what occurs in Hook’s Law. We will write this system of equations as
AF =G .

3.2 LOCAL AND GLOBAL ERROR

Let F̂ be the actual solution to the differential equation, evaluated via f at the points in our partition.
i.e. F̂ = [ f (x1), . . . , f (xN−1)]T . Then, there is a local truncation error τ such that,

AF̂ =G +τ. (3.2)

The global error, is E = F−F̂ . i.e. The difference between the solution to the finite difference equation
and the actual solution to the differential equation. We can think of the local error as the “post" error,
and the global error as the “pre" error.
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3.3 COMPUTING THE LOCAL ERROR

From above, we have τ= AF̂ −G . So, the i th component of τ is,

τi =
∑

j
Ai j f (x j )− gi ,

= 1

h2

(
f (xi )+ f ′(xi )h + 1

2
f ′′(xi )h2 −2 fi + fi − f ′

i h + 1

2
f ′′

i h2
)
− gi ,

= 1

h2

(
1

2
f ′′(xi )h2 + 1

2
f ′′

i h2
)
− gi ,

= f ′′(xi )+ 1

12
h2 f 4(xi )+O (h4)− g (xi )

(3.3)

Note that in the last step, the third order terms cancel. Using Poisson’s Equation, we have f ′′ = g . So,
τi = 1

12 h2 f 4(xi )+O (h4). Hence, the local truncation error is O (h2).

3.4 COMPUTING THE GLOBAL ERROR

Next, we want to find the global error for Poisson’s Equation using centered difference. From before,
we know that the global error is E = F − F̂ . Note that AE = AF − AF̂ =G − (G +τ) =⇒ AE =−τ.

Look at the map e(xi ) = Ei , evaluated at a point xi of our partition. Note that there is no error at the
boundary points. i.e. e(x0) = e(xN ) = 0. We have e ′′(x) = − 1

12 h2 f 4(xi ). Integrating twice, and again
using f ′′ = g , we get e(xi ) =− 1

12 g (xi )h2 +C1x +C2.

Using the boundary conditions, we can solve for the constants.

e(x0) = 0 =⇒ − 1

12
g (x0)h2 +x0C1 +C2 = 0, (3.4)

e(x1) = 0 =⇒ − 1

12
g (xN )h2 +xN C1 +C2 = 0. (3.5)

This gives us,

C1 = h2

12

g (x0)− g (xN )

a −b
, (3.6)

C2 = h2

12

g (xN )− g (x0)

a −b
. (3.7)

In matrix notation, we have,

(
a 1
b 1

)(
C1

C2

)
= h2

12

(
g (x0)
g (xN )

)
. (3.8)

Therefore, the global error ||e(x)||2 → 0 as h → 0.
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4 NECCESSARY CONDITIONS FOR CONVERGENCE

We want to show conditions under which the global error ||E ||→ 0 as h → 0 generally.

Suppose one has a finite difference method for a linear boundary value problem that gives a sequence
AhFh =G where, h = 1

N−1 . So, h is smaller when the dimension N is larger.

(Definition) Stable

The method is stable if (Ah)−1 exists for all h sufficiently small, and there exists a c ∈ R independent
of h such that,

||(Ah)−1|| ≤C for all h ≤ h0, (4.1)

for some h0. i.e. For h “small" enough. Intuitively, stability is how close the finite difference solution
is to the actual PDE solution.

(Definition) Consistent

The method is consistent with the differential equations and boundary conditions if,

||τh ||→ 0 as h → 0. (4.2)

Intuitively, consistency is how closely the finite difference method is satisfied by the actual solutions
to the differential equations.

(Theorem) The Fundamental Theorem of Finite Differences

Consistency and stability implies convergence.

(Proof ) AhE h =−τh =⇒ E h = (Ah)−1τh =⇒ ||E h || = ||(Ah)−1τh || ≤ ||(Ah)−1||||τh || ≤C ||τh ||→ 0.

4.1 CONVERGENCE UNDER DIFFERENT NORMS

We know that norms are equivalent in finite dimensional vector spaces. Therefore, this works for any
norms. However, the scalar factor will be different.

Note that if the local truncation error ||τh || is O (hp ), then the global error ||E h || is O (hp ) regardless of
norm, since the norms differ only by a constant.

5 CONVERGENCE FOR POISSON’S EQUATION

Suppose we have a system of equations for the one dimensional Poisson’s Equation, FU = G . Note
that the notation has changed from the AF = G used previously. We want to prove its convergence
explicitly.
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Since F is a symmetric matrix, the operator norm (or 2-norm) is ||F ||2 = maxp |λp |, where the maxi-
mum is taken over all the eigenvalues of F . This is also known as the spectral radius of F . Then, we
have ||F−1||2 = maxp |λ−1

p | = (minp |λp |)−1.

(Claim) F h(up ) = λh
p uh

p , where up = ∑
j ê j sin(pπ j h), and λp = 2

h2 (cos(pπh)−1) are respectively the
eigenvectors and eigenvalues of F .

(Proof )

F (up ) = 1

h2

∑
i

êi
(
up

i+1 −2up
i +up

i−1

)
,

= 1

h2

∑
i , j

êi
(
sin(pπ(i +1)h)−2sin(pπi h)+ sin(pπ(i −1)h)

)
= 1

h2

∑
i

êi (sinθi cosθ+ sinθcosθ−2sinθi + sinθi cosθ− sinθcosθ) ,

= 1

h2

∑
i

êi sinθi (2cosθ−2),

= 2

h2 (cos(πph)−1)
∑

i
êi sin(pπi h),

=λp up .

(5.1)

where we let θ = πph to simplify the manipulations, and we used the angle sum formula from
trigonometry. Therefore, we have,

||F−1||2 = (
2

h2 (cosπph −1))−1,

=
[

2

h2 (1− {1− 1

2
π2h2 +O (h4)})

]−1

,

= (π2 +O (h2))−1,

(5.2)

which goes to 1
π2 as h → 0. Finally,

||E h ||2 ≤ ||(F h)−1|| |τh |2 ≤ 1

π2

1

12
||g ′′||2h2 (5.3)

where we used our result for τ from (3.1), and that f ′′ = g . So, as long as the source function g is C 2,
the one dimensional Poisson’s Equation is convergent. i.e. (5.3) goes to 0, as h goes to 0.

6 EXTENDING TO THE TWO DIMENSIONAL CASE

6.1 DEFINITIONS AND SETUP

Consider the lattice L = {(nh,mh) | n,m ∈ Z,h ∈ R+} with spacing size h. Let Ω be the region in R2

such that ∂Ω is closed, continuous and has no double point.

Define the meshΩh =Ω∩L =Ω′
h ∪∂Ωh , whereΩ′

h is the interior and ∂Ωh is the boundary. The inte-
rior are all points on the lattice such that all their neighbors are also inΩh . The boundary are points

6



such that some neighbors are not inΩh .

Next, we define a bilinear form using forward difference,

B(u, v) = aDx (u)Dx (v)+bDx (u)D y (v)+ cD y (u)Dx (v)+dD y (u)D y (v)

+αD y (u)v +βD y (u)v +γuDx (v)+δuD y (v)+ g uv.
(6.1)

This is analogous to a Lagrangian for the continuous case. Now, we want to sum this over all the mesh
grid points. We construct a discrete “action",

Sh = h2
∑
Ωh

B(u, v) =
{

−h2 ∑
Ω′

h
vL(u)+h

∑
∂Ωh

vR(u)

−h2 ∑
Ω′

h
uM(v)+h

∑
∂Ωh

uS(v).
(6.2)

So, the sum decompose into a sum over interior points and a sum over boundary points. Now, we
want to know what L(u) looks like. Note that h

∑
Ωh

uDx (v) =∑
∂Ωh

vR(u)−h
∑
Ω′

h
vD̂x (u). So, we have

L(u) = D̂x (aDx (u))+ D̂ y (bDx (u))+·· ·− D̂x (αDx (u)) · · ·+ D̂x (γ(u))− g u.

6.2 SYMMETRIC CASE

For simplicity, we restrict our attention to when B is symmetric. i.e. B(u, v) = B(v,u). Then, b = c,
α= γ, β= δ in (6.1). Also, L = M and R = S in (6.2). Then, we have,

B(u,u) =[a(Dx (u))2 +2bD̂x (u)D y (u)+ c(D y (u))2]

+2αuDx (u)+2βuD y (u)+ g u2.
(6.3)

Let p(u,u) = a(Dx (u))2 +2bD̂x (u)D y (u)+ c(D y (u))2. We call this the characteristic form. If p(u,u) is
semi-definite in finite differences, then we say B is elliptic. If p(u,u) is not semi-definite, we say B is
hyperbolic. Treating this like a minimization problem, we have,

S[φ] = h2
∑
Ωh

B(φ,φ), (6.4)

u = argminφS[φ] =⇒ L(u) = 0. (6.5)

If we perturb φ→φ+δφ, then S[φ] → S[φ+δφ], we get,

S[φ+δφ] = h2
∑
Ωh

B(φ+δφ,φ+δφ)

= S[φ]+2h2
∑
Ωh

B(φ,δφ)+O (δφ2)

= S[φ]+2h2
∑
Ω′

h

δφL(φ)+ ∑
∂Ωh

δφR(φ)

(6.6)

Now,
∑
∂Ωh

δφR(φ) = 0 since the variation on the boundary is 0. So, L(φ) must be identically 0.
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6.3 CONDITIONS FOR CONVERGENCE

For convergence, given any Ω∗ ⊂ Ω, we need un and all of its finite differences to be bounded and
equicontinuous.

Equicontinuity means that for each function wh , there is a δ(ε) such that |P −P1| < δ(ε) =⇒ |wh(P )−
wh(P1)| < ε, for all h.

The proof of convergence roughly consists of these three steps,

1. h → 0, h2 ∑
u2 and h2 ∑

(Dx (u))2 + (D y (u))2 have to be bounded.

2. Recursive reasoning show that all the difference quotients are bounded.

3. Boundedness of all DQ =⇒ equicontinuity.

We give a proof of the first step. The solution satisfies the Laplacian ∆u = 0 and so it must be on the
boundary. Now, h2 ∑

(Dx (u))2 + (D y (u))2 ≤ h2 ∑
(Dx (g ))2 + (D y (g ))2, where g is a function that satis-

fies the partial differential equation and boundary condition. However,
∫

d A (∂g
∂x )2 + (∂g

∂y )2 =C .

Therefore, h2 ∑
(Dx (u))2 + (D y (u))2 is bounded by C .

7 WAVE EQUATION EXAMPLE

Consider the equation,

∂2 y

∂t 2 = c2 ∂
2 y

∂x2 . (7.1)

We can intrepret this as “acceleration is propotional to curvature". Note that this is hyperbolic be-

cause manipulating it into ∂2 y
∂t 2 −c2 ∂

2 y
∂x2 = 0 results in a negative sign. We turn this into a finite difference

model,

y t+1
i −2y t

i + y t+1
i

∆t 2 = c2
y t

i−1 −2y t
i + y t

i−1

∆x2 . (7.2)

This can be manipulated into,

y t+1
i = 2y t

i − y t−1
i + c2 ∆t 2

∆x2 (y t
i+1 −2y t

i + y t
i−1),

= 2(1− c2 ∆t 2

∆x2 )y t
i + c2 ∆t 2

∆x2 (y t
i+1 + y t

i−1)− y t−1
i .

(7.3)

We let ∆x = ∆t . i.e. We make the grid spacing for both time and space equal. In rough matrix nota-
tion, we have,
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Y

t+1

=


2( 1

c2 −1) 1 0 · · ·
1 2( 1

c2 −1) 1 · · ·
0 1 2( 1

c2 −1) · · ·
...

...
...

. . .


Y

t

−
Y

t−1

. (7.4)

This is similar to (3.1), which we noticed was analogous to a system of springs. From what we know
about springs and Hook’s Law, we need ( 1

c2 − 1) < 0 =⇒ c > 1. We can interpret c as the speed of
information progation. If c is not large enough, the system is unstable. However, if c > 1, we get the
wave behavior that we were expecting*.

*This was demonstrated using the computer during the lecture.
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