Math 11. Multivariable Calculus. Written Homework 2.
 Due on Wednesday, 10/1/14.

You can turn in this homework by leaving it in the boxes labeled Math 11 in the hallway outside of 008 Kemeny anytime before $3: 00 \mathrm{pm}$ on Wednesday.

1. Show that the curve given parametrically by $x=\sin t, y=\cos t$ and $z=\sin ^{2} t$ is the curve of intersection of the surfaces $z=x^{2}$ and $x^{2}+y^{2}=1$. Use this information to help sketch the curve.
2. If a curve in \mathbb{R}^{3} has the property that the position vector $\mathbf{r}(t)$ is always perpendicular to the tangent vector $r^{\prime}(t)$, show that the curve lies on a sphere with center at the origin.
3. Section 13.3: problem 15. Suppose you start at the point $(0,0,3)$ and move 5 units of arc length along the curve $\mathbf{r}(t)=\langle 3 \sin t, 4 t, 3 \cos t\rangle$ in the "positive" direction (increasing t). Where are you then?
4. Consider the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{4}}{x^{2}+y^{8}} .
$$

If it exists, find its value; if not show that it does not exist.

