Math 11. Multivariable Calculus. Written Homework 3.
 Due on Wednesday, 10/8/14.

You can turn in this homework by leaving it in the boxes labeled Math 11 in the hallway outside of 008 Kemeny anytime before $3: 00 \mathrm{pm}$ on Wednesday.

1. You are told that there is a function $f=f(x, y)$ whose partial derivatives are $f_{x}(x, y)=$ $x+4 y$ and $f_{y}(x, y)=3 x-y$. Should you believe this? Why or why not?
2. The pressure, volume, and temperature of a mole of an ideal gas are related by the equation $P V=8.31 T$, where P is measured in kilopascals, V in liters, and T in $^{\circ} \mathrm{K}$. Use differentials to estimate the approximate change in the pressure if the volume increases from 12 to 12.3 liters and the temperature decreases from $310^{\circ} \mathrm{K}$ to $305^{\circ} \mathrm{K}$.
3. Wheat production in a given year depends on the average temperature T and the annual rainfall R. Scientists estimate that the average temperature is rising at a rate of $0.15^{\circ} \mathrm{C} /$ year and rainfall is decreasing at a rate of $0.1 \mathrm{~cm} /$ year. They also estimate that at current production levels, $\frac{\partial W}{\partial T}=-2$ and $\frac{\partial W}{\partial R}=8$.
(a) What is the significance of the signs of these partial derivatives?
(b) Estimate the current rate of change of wheat production $d W / d t$.
4. Suppose that you are hiking a hill whose shape is given by the equation $z=f(x, y)=$ $1000-0.005 x^{2}-0.01 y^{2}$ where x, y and z are measured in meters, and you are standing at a point with coordinates $(60,40,966)$. The positive x axis points east and the positive y axis points north.
(a) If you walk due south, will you start to ascend or descend? At what rate?
(b) If you walk northwest, will you start to ascend or descend? At what rate?
(c) In which direction is the slope largest? What is the rate of ascent in that direction? At what angle above the horizontal does the path in that direction begin?
