Math 11. Multivariable Calculus.
 Written Homework 4.
 Due on Wednesday, 10/15/14.

You can turn in this homework by leaving it in the boxes labeled Math 11 in the hallway outside of 008 Kemeny anytime before $3: 00 \mathrm{pm}$ on Wednesday.

1. The plane $y+z=3$ intersects the cylinder $x^{2}+y^{2}=5$ in an ellipse. Without parametrizing this ellipse, find parametric equations for its tangent line at the point $(1,2,1)$.
2. A rectangular building is being designed to minimize heat loss. The east and west walls lose heat at a rate of 10 units $/ m^{2}$ per day, the north and south walls at a rate of 8 units $/ m^{2}$ per day, the floor at 1 unit $/ m^{2}$ per day, and the roof at a rate of 5 units $/ m^{2}$ per day. Each wall must be at least 30 m long, the height must be at least 4 m , and the volume must be exactly $4000 \mathrm{~m}^{3}$.
(a) Find the heat loss as a function of the lengths of the sides.
(b) Find the dimensions that minimize the heat loss, checking both the critical points and the boundary.
(c) Could you design a building with even less heat loss if the restrictions on the lengths of the walls were removed?
3. Find the extreme values of $f(x, y)=e^{-x y}$ on the domain $x^{2}+4 y^{2} \leq 1$.
