Math 11. Multivariable Calculus. Written Homework 5.
 Due on Wednesday, 10/22/14.

You can turn in this homework by leaving it in the boxes labeled Math 11 in the hallway outside of 008 Kemeny anytime before $3: 00 \mathrm{pm}$ on Wednesday.

1. Find the gradient vector field ∇f of $f(x, y)=\sqrt{x^{2}+y^{2}}$ and sketch it.
2. Find the work done by the force field $\mathbf{F}(x, y)=x^{2} \mathbf{i}+x y \mathbf{j}$ on a particle that moves once around the circle $x^{2}+y^{2}=4$ oriented in the counterclockwise direction.
3. A thin wire has the shape of the first-quadrant part of the circle with center the origin and radius a. If the density function is $\rho(x, y)=k x y$, find the mass and center of mass of the wire.
4. Find a potential function $f(x, y)$ for $\mathbf{F}=\left\langle(1+x y) e^{x y}, x^{2} e^{x y}\right\rangle$, and evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is given by $\mathbf{r}(t)=\langle\cos t, 2 \sin t\rangle, 0 \leq t \leq \pi / 2$.
