Math 11. Multivariable Calculus. Written Homework 8.
 Due on Wednesday, 11/12/14.

You can turn in this homework by leaving it in the boxes labeled Math 11 in the hallway outside of 008 Kemeny anytime before $3: 00 \mathrm{pm}$ on Wednesday.

1. Let D be a region bounded by a simple closed path C in the $x y$-plane. Use Green's Theorem to prove that the coordinates (\bar{x}, \bar{y}) of the centroid (the centroid is the center of mass of D, if we assume that D is a lamina of uniform density ρ and area A) of D are

$$
\bar{x}=\frac{1}{2 A} \int_{C} x^{2} d y, \quad \bar{y}=-\frac{1}{2 A} \int_{C} y^{2} d x .
$$

2. Let C be the arc of the curve $y=\cos x$ from $(-\pi / 2,0)$ to $(\pi / 2,0)$, and $\mathbf{F}=\langle x+$ $\left.y^{2}, e^{-y^{2}}+x^{2}\right\rangle$ a vector field. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
Hint: Green's theorem may be helful here, if you find a way to turn C into a closed path.
3. Prove $\operatorname{div}(f \mathbf{F})=f \operatorname{div} \mathbf{F}+\mathbf{F} \cdot \nabla f$ assuming that the appropriate partial derivatives exist and are continuous. Here $\mathbf{F}=\langle P, Q, R\rangle$ and P, Q, R, f are all scalar-valued functions of the variables x, y, z.
4. Find the surface area of the part of the cone $z=\sqrt{x^{2}+y^{2}}$ that lies between the plane $y=x$ and the parabolic cylinder $y=x^{2}$.
