Here are some solutions. As always no guarantee there are no typos, but I think things
are correct.

1. Consider two vector fields F = (—y, x) and G = (cosz + 3y, — 1) defined in the plane.

(a) Determine whether F or G is conservative. If conservative, produce a potential
function.

We note that F has nonzero curl, so F cannot be conservative. The curl of G is
zero, and G is smooth, so we look for a potential function g with G = Vg. We
would need g, = cosx +y and g, = = — 1.

g = cosx +y implies g(x,y) = sinz + zy + h(y), so that g, =z + h'(y) = = — 1,
thus h'(y) = —1 and we can take h(y) = —y. We double check that with g(z,y) =
sinz + 2y —y, G =Vg.

(b) Let C' be the oriented curve from A = (—3,0) to B = (1,0) given as follows: the
straight line from (—3,0) to (—1,0), then the clockwise arc of the unit circle to
the point (1,0). Compute the line integrals [, Fedr and [, Gedr.

fc G e dr is certainly easier since we can use the fundamental theorem of line
integrals:

JoGedr = [, Vgedr=g(B) —g(A) = g(1,0) — g(—3,0) = sin 1 — sin(—3).

For the other line integral, we need to parametrize the two pieces of the curve.
Let Cy be the first piece given by r(t) = (¢,0) for =3 <t < —1, and let Cy be
the second piece given by r(t) = (—cost,sint) for 0 < ¢ < 7. Note the —cost
to produce the clockwise orientation. So now [, Fedr = fCl Fedr+ f02 Fedr =

f__31<0, t)s(1,0)dt + [ (—sint, —cost) e (sint,costydt =0 —m = —m.
2. Let M be the surface of the potato chip which is that part of the surface z = zy
inside the cylinder 22 + y?> = 1, and let C be its boundary positively oriented. If

F = 32z — y, 12 + yz,2° + y?), find % Fedr.
c

By Stokes’ theorem, f Fodr:// V xFedS. The curlis VxF = (y—x,z,2+1).
c

M
Parametrizing M as the graph of a function f(x,y) = xy with the parametrization
domain the unit disk D = {(z,y) | 2* + y* < 1} we get dS = (—f,, —f,, 1)dA, and

SO j{F-dr = // (y —x,z,z+ 1)edS = //(y—x,x,xy+1>-<—y,—x,1>dA =
c M D

/ (1 + 22y — 2° — y*)dA. Noting that [[,2zydA = 0 by symmetry and changing
D

27 1
to polar coordinates for the rest, we obtain fF-dr = / / (1 —r*)rdrdf =
c o Jo
2n(1/2 —1/4) = n/2.
3. Let E denote the portion of the solid sphere of radius R in the first octant, and let

F = (2z+y,y? cos(zy)). Compute the flux of F (surface integral) across the boundary
of E, oriented by the outward-pointing normal vectors.



By the Divergence theorem, the flux across the boundary is equal to [/ pVeFdV =
[[[z2+2ydV =2 [[[.dV +2 [[[,ydV, and we note that the first integral is just
twice the volume of one-eighth of a sphere of radius R, 7 R*/3. In spherical coordinates
(note are going from zyz to pf¢ so the Jacobian appears) we can express the second

w/2 /2 Rt w/2 7TR4
integral as 2/ / / psin¢siné p®sind dpdf do = / sin(¢)?dp = ——
0

for a final answer of 7R*/3 + 7 R*/S.

. Let C denote the circle of radius R centered at the origin and oriented counterclockwise.

Let F = (arctanz + y°, 2z — /y). Compute 7{ Fedr.
c

We can use Green’s theorem: Let D be the disk whose boundary is C. Then % Fedr =

c
2m
/ (Qy — Py)dA = // 2 —3y%)dA = / / (2 — 3r?sin? 0)r dr df =
27r
/ / 2rdrdf — / sin «9d9/ 3r’dr = 2nR? — 37 R* /4.
0

. Compute the flux of the vector field F = (23, 2222, 3y?z) over the surface M where M
is the boundary of the solid £ bounded by the paraboloid z = 4 — 22 — y? and the
xy-plane.

Using the Divergence theorem and cylindrical coordinates, we get

//MF-dr:///V-FdVZ//[E(3$2+3y2)dV=/OQW/O2/O4_T23r2rdzdrd9:

27r/ 3r3(4 — r?) dr = 327.
0

. Compute / ydx + xdy + (2% + y*) dz where C' is the positively oriented curve which

c
bounds that part of the unit sphere in the first octant. Note that this is a closed curve
consisting of three parts. Let M denote the corresponding surface.

By Stokes’ theorem, %F-dr = / V x FedS. Now V x F = (2y, —2z,0). Also

given that the surface is a level surface: G(z,y,2) = 2> + y?> + 2> = 1, a normal
vector is VG = (2x, 2y, 2z). Since this is the unit sphere, the unit normal n = (x, y, 2)
is the outward facing unit normal vector, so dS = ndS. Thus [/ yV x FedS =

[0 2y, —22,0) e (z,y, 2)dS = 0.



