Here are some solutions. As always no guarantee there are no typos, but I think things are correct.

1. Consider two vector fields $\mathbf{F}=\langle-y, x\rangle$ and $\mathbf{G}=\langle\cos x+y, x-1\rangle$ defined in the plane.
(a) Determine whether \mathbf{F} or \mathbf{G} is conservative. If conservative, produce a potential function.
We note that \mathbf{F} has nonzero curl, so \mathbf{F} cannot be conservative. The curl of \mathbf{G} is zero, and \mathbf{G} is smooth, so we look for a potential function g with $\mathbf{G}=\nabla g$. We would need $g_{x}=\cos x+y$ and $g_{y}=x-1$.
$g_{x}=\cos x+y$ implies $g(x, y)=\sin x+x y+h(y)$, so that $g_{y}=x+h^{\prime}(y)=x-1$, thus $h^{\prime}(y)=-1$ and we can take $h(y)=-y$. We double check that with $g(x, y)=$ $\sin x+x y-y, \mathbf{G}=\nabla g$.
(b) Let C be the oriented curve from $A=(-3,0)$ to $B=(1,0)$ given as follows: the straight line from $(-3,0)$ to $(-1,0)$, then the clockwise arc of the unit circle to the point (1,0). Compute the line integrals $\int_{C} \mathbf{F} \bullet d \mathbf{r}$ and $\int_{C} \mathbf{G} \bullet d \mathbf{r}$.
$\int_{C} \mathbf{G} \bullet d \mathbf{r}$ is certainly easier since we can use the fundamental theorem of line integrals:
$\int_{C} \mathbf{G} \bullet d \mathbf{r}=\int_{C} \nabla g \bullet d \mathbf{r}=g(B)-g(A)=g(1,0)-g(-3,0)=\sin 1-\sin (-3)$.
For the other line integral, we need to parametrize the two pieces of the curve. Let C_{1} be the first piece given by $\mathbf{r}(t)=\langle t, 0\rangle$ for $-3 \leq t \leq-1$, and let C_{2} be the second piece given by $\mathbf{r}(t)=\langle-\cos t, \sin t\rangle$ for $0 \leq t \leq \pi$. Note the $-\cos t$ to produce the clockwise orientation. So now $\int_{C} \mathbf{F} \bullet d \mathbf{r}=\int_{C_{1}} \mathbf{F} \bullet d \mathbf{r}+\int_{C_{2}} \mathbf{F} \bullet d \mathbf{r}=$ $\int_{-3}^{-1}\langle 0, t\rangle \bullet\langle 1,0\rangle d t+\int_{0}^{\pi}\langle-\sin t,-\cos t\rangle \bullet\langle\sin t, \cos t\rangle d t=0-\pi=-\pi$.
2. Let M be the surface of the potato chip which is that part of the surface $z=x y$ inside the cylinder $x^{2}+y^{2}=1$, and let C be its boundary positively oriented. If $\mathbf{F}=\left\langle 3 x z-y, x z+y z, x^{2}+y^{2}\right\rangle$, find $\oint_{C} \mathbf{F} \bullet d \mathbf{r}$.
By Stokes' theorem, $\oint_{C} \mathbf{F} \bullet d \mathbf{r}=\iint_{M} \nabla \times \mathbf{F} \bullet d \mathbf{S}$. The curl is $\nabla \times \mathbf{F}=\langle y-x, x, z+1\rangle$. Parametrizing M as the graph of a function $f(x, y)=x y$ with the parametrization domain the unit disk $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$ we get $d \mathbf{S}=\left\langle-f_{x},-f_{y}, 1\right\rangle d A$, and so $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{M}\langle y-x, x, z+1\rangle \cdot d \mathbf{S}=\iint_{D}\langle y-x, x, x y+1\rangle \cdot\langle-y,-x, 1\rangle d A=$ $\iint_{D}\left(1+2 x y-x^{2}-y^{2}\right) d A$. Noting that $\iint_{D} 2 x y d A=0$ by symmetry and changing to polar coordinates for the rest, we obtain $\oint_{C} \mathbf{F} \bullet d \mathbf{r}=\int_{0}^{2 \pi} \int_{0}^{1}\left(1-r^{2}\right) r d r d \theta=$ $2 \pi(1 / 2-1 / 4)=\pi / 2$.
3. Let E denote the portion of the solid sphere of radius R in the first octant, and let $\mathbf{F}=\left\langle 2 x+y, y^{2}, \cos (x y)\right\rangle$. Compute the flux of \mathbf{F} (surface integral) across the boundary of E, oriented by the outward-pointing normal vectors.

By the Divergence theorem, the flux across the boundary is equal to $\iiint_{E} \nabla \cdot \mathbf{F} d V=$ $\iiint_{E} 2+2 y d V=2 \iiint_{E} d V+2 \iiint_{E} y d V$, and we note that the first integral is just twice the volume of one-eighth of a sphere of radius $R, \pi R^{3} / 3$. In spherical coordinates (note are going from $x y z$ to $\rho \theta \phi$ so the Jacobian appears) we can express the second integral as $2 \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{R} \rho \sin \phi \sin \theta \rho^{2} \sin \phi d \rho d \theta d \phi=\frac{R^{4}}{2} \int_{0}^{\pi / 2} \sin (\phi)^{2} d \phi=\frac{\pi R^{4}}{8}$, for a final answer of $\pi R^{3} / 3+\pi R^{4} / 8$.
4. Let C denote the circle of radius R centered at the origin and oriented counterclockwise. Let $\mathbf{F}=\left\langle\arctan x+y^{3}, 2 x-\sqrt[3]{y}\right\rangle$. Compute $\oint_{C} \mathbf{F} \bullet d \mathbf{r}$.
We can use Green's theorem: Let D be the disk whose boundary is C. Then $\oint_{C} \mathbf{F} \bullet d \mathbf{r}=$

$$
\begin{aligned}
& \iint_{D}\left(Q_{x}-P_{y}\right) d A=\iint_{D}\left(2-3 y^{2}\right) d A=\int_{0}^{2 \pi} \int_{0}^{R}\left(2-3 r^{2} \sin ^{2} \theta\right) r d r d \theta= \\
& \int_{0}^{2 \pi} \int_{0}^{R} 2 r d r d \theta-\int_{0}^{2 \pi} \sin ^{2} \theta d \theta \int_{0}^{R} 3 r^{3} d r=2 \pi R^{2}-3 \pi R^{4} / 4
\end{aligned}
$$

5. Compute the flux of the vector field $\mathbf{F}=\left\langle x^{3}, 2 x z^{2}, 3 y^{2} z\right\rangle$ over the surface M where M is the boundary of the solid E bounded by the paraboloid $z=4-x^{2}-y^{2}$ and the $x y$-plane.
Using the Divergence theorem and cylindrical coordinates, we get

$$
\begin{aligned}
& \iint_{M} \mathbf{F} \cdot d \mathbf{r}=\iiint_{E} \nabla \cdot \mathbf{F} d V=\iiint_{E}\left(3 x^{2}+3 y^{2}\right) d V=\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{4-r^{2}} 3 r^{2} r d z d r d \theta= \\
& 2 \pi \int_{0}^{2} 3 r^{3}\left(4-r^{2}\right) d r=32 \pi
\end{aligned}
$$

6. Compute $\int_{C} y d x+x d y+\left(x^{2}+y^{2}\right) d z$ where C is the positively oriented curve which bounds that part of the unit sphere in the first octant. Note that this is a closed curve consisting of three parts. Let M denote the corresponding surface.
By Stokes' theorem, $\oint_{C} \mathbf{F} \bullet d \mathbf{r}=\iint_{M} \nabla \times \mathbf{F} \bullet d \mathbf{S}$. Now $\nabla \times \mathbf{F}=\langle 2 y,-2 x, 0\rangle$. Also given that the surface is a level surface: $G(x, y, z)=x^{2}+y^{2}+z^{2}=1$, a normal vector is $\nabla G=\langle 2 x, 2 y, 2 z\rangle$. Since this is the unit sphere, the unit normal $\mathbf{n}=\langle x, y, z\rangle$ is the outward facing unit normal vector, so $d \mathbf{S}=\mathbf{n} d S$. Thus $\iint_{M} \nabla \times \mathbf{F} \bullet d \mathbf{S}=$ $\iint_{M}\langle 2 y,-2 x, 0\rangle \bullet\langle x, y, z\rangle d S=0$.
