
Here are some solutions. As always no guarantee there are no typos, but I think things
are correct.

1. Consider two vector fields F = 〈−y, x〉 and G = 〈cos x+ y, x− 1〉 defined in the plane.

(a) Determine whether F or G is conservative. If conservative, produce a potential
function.

We note that F has nonzero curl, so F cannot be conservative. The curl of G is
zero, and G is smooth, so we look for a potential function g with G = ∇g. We
would need gx = cos x + y and gy = x − 1.

gx = cos x + y implies g(x, y) = sin x + xy + h(y), so that gy = x + h′(y) = x− 1,
thus h′(y) = −1 and we can take h(y) = −y. We double check that with g(x, y) =
sin x + xy − y, G = ∇g.

(b) Let C be the oriented curve from A = (−3, 0) to B = (1, 0) given as follows: the
straight line from (−3, 0) to (−1, 0), then the clockwise arc of the unit circle to
the point (1, 0). Compute the line integrals

∫
C

F • dr and
∫

C
G • dr.∫

C
G • dr is certainly easier since we can use the fundamental theorem of line

integrals:∫
C

G • dr =
∫

C
∇g • dr = g(B) − g(A) = g(1, 0) − g(−3, 0) = sin 1 − sin(−3).

For the other line integral, we need to parametrize the two pieces of the curve.
Let C1 be the first piece given by r(t) = 〈t, 0〉 for −3 ≤ t ≤ −1, and let C2 be
the second piece given by r(t) = 〈− cos t, sin t〉 for 0 ≤ t ≤ π. Note the − cos t
to produce the clockwise orientation. So now

∫
C

F • dr =
∫

C1

F • dr +
∫

C2

F • dr =∫
−1

−3
〈0, t〉 • 〈1, 0〉dt +

∫ π

0
〈− sin t,− cos t〉 • 〈sin t, cos t〉dt = 0 − π = −π.

2. Let M be the surface of the potato chip which is that part of the surface z = xy
inside the cylinder x2 + y2 = 1, and let C be its boundary positively oriented. If

F = 〈3xz − y, xz + yz, x2 + y2〉, find

∮
C

F • dr.

By Stokes’ theorem,

∮
C

F • dr =

∫∫
M

∇×F • dS. The curl is ∇×F = 〈y−x, x, z +1〉.
Parametrizing M as the graph of a function f(x, y) = xy with the parametrization
domain the unit disk D = {(x, y) | x2 + y2 ≤ 1} we get dS = 〈−fx,−fy, 1〉dA, and

so

∮
C

F • dr =

∫∫
M

〈y − x, x, z + 1〉 • dS =

∫∫
D

〈y − x, x, xy + 1〉 • 〈−y,−x, 1〉dA =∫∫
D

(1 + 2xy − x2 − y2)dA. Noting that
∫∫

D
2xydA = 0 by symmetry and changing

to polar coordinates for the rest, we obtain

∮
C

F • dr =

∫
2π

0

∫
1

0

(1 − r2)r dr dθ =

2π(1/2 − 1/4) = π/2.

3. Let E denote the portion of the solid sphere of radius R in the first octant, and let
F = 〈2x+y, y2, cos(xy)〉. Compute the flux of F (surface integral) across the boundary
of E, oriented by the outward-pointing normal vectors.
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By the Divergence theorem, the flux across the boundary is equal to
∫∫∫

E
∇ •F dV =∫∫∫

E
2 + 2y dV = 2

∫∫∫
E

dV + 2
∫∫∫

E
ydV , and we note that the first integral is just

twice the volume of one-eighth of a sphere of radius R, πR3/3. In spherical coordinates
(note are going from xyz to ρθφ so the Jacobian appears) we can express the second

integral as 2

∫ π/2

0

∫ π/2

0

∫ R

0

ρ sin φ sin θ ρ2 sin φ dρ dθ dφ =
R4

2

∫ π/2

0

sin(φ)2 dφ =
πR4

8
,

for a final answer of πR3/3 + πR4/8.

4. Let C denote the circle of radius R centered at the origin and oriented counterclockwise.

Let F = 〈arctan x + y3, 2x − 3
√

y〉. Compute

∮
C

F • dr.

We can use Green’s theorem: Let D be the disk whose boundary is C. Then

∮
C

F • dr =
∫∫

D

(Qx − Py) dA =

∫∫
D

(2 − 3y2) dA =

∫
2π

0

∫ R

0

(2 − 3r2 sin2 θ)r dr dθ =
∫

2π

0

∫ R

0

2r dr dθ −
∫

2π

0

sin2 θ dθ

∫ R

0

3r3 dr = 2πR2 − 3πR4/4.

5. Compute the flux of the vector field F = 〈x3, 2xz2, 3y2z〉 over the surface M where M
is the boundary of the solid E bounded by the paraboloid z = 4 − x2 − y2 and the
xy-plane.

Using the Divergence theorem and cylindrical coordinates, we get∫∫
M

F • dr =

∫∫∫
E

∇ •F dV =

∫∫∫
E

(3x2 + 3y2) dV =

∫
2π

0

∫
2

0

∫
4−r2

0

3r2 r dz dr dθ =

2π

∫
2

0

3r3(4 − r2) dr = 32π.

6. Compute

∫
C

y dx + x dy + (x2 + y2) dz where C is the positively oriented curve which

bounds that part of the unit sphere in the first octant. Note that this is a closed curve
consisting of three parts. Let M denote the corresponding surface.

By Stokes’ theorem,

∮
C

F • dr =

∫∫
M

∇ × F • dS. Now ∇ × F = 〈2y,−2x, 0〉. Also

given that the surface is a level surface: G(x, y, z) = x2 + y2 + z2 = 1, a normal
vector is ∇G = 〈2x, 2y, 2z〉. Since this is the unit sphere, the unit normal n = 〈x, y, z〉
is the outward facing unit normal vector, so dS = ndS. Thus

∫∫
M
∇ × F • dS =∫∫

M
〈2y,−2x, 0〉 • 〈x, y, z〉dS = 0.
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