Here are some problems to keep you awake at night. As usual these are not necessarily representative of the problems on the final, but should give you a decent review of the new material. You are on your own for the old material.

1. Consider two vector fields $\mathbf{F}=\langle-y, x\rangle$ and $\mathbf{G}=\langle\cos x+y, x-1\rangle$ defined in the plane.
(a) Determine whether \mathbf{F} or \mathbf{G} is conservative. If conservative, produce a potential function.
(b) Let C be the oriented curve from $(-3,0)$ to $(1,0)$ given as follows: the straight line from $(-3,0)$ to $(-1,0)$, then the clockwise arc of the unit circle to the point $(1,0)$. Compute the line integrals $\int_{C} \mathbf{F} \bullet d \mathbf{r}$ and $\int_{C} \mathbf{G} \bullet d \mathbf{r}$.
2. Let M be the surface of the potato chip which is that part of the surface $z=x y$ inside the cylinder $x^{2}+y^{2}=1$, and let C be its boundary positively oriented. If $\mathbf{F}=\left\langle 3 x z-y, x z+y z, x^{2}+y^{2}\right\rangle$, find $\oint_{C} \mathbf{F} \bullet d \mathbf{r}$.
3. Let E denote the portion of the solid sphere of radius R in the first octant, and let $\mathbf{F}=\left\langle 2 x+y, y^{2}, \cos (x y)\right\rangle$. Compute the flux of \mathbf{F} (surface integral) across the boundary of E, oriented by the outward-pointing normal vectors.
4. Let C denote the circle of radius R centered at the origin and oriented counterclockwise.

Let $\mathbf{F}=\left\langle\arctan x+y^{3}, 2 x-\sqrt[3]{y}\right\rangle$. Compute $\oint_{C} \mathbf{F} \bullet d \mathbf{r}$.
5. Compute the flux of the vector field $\mathbf{F}=\left\langle x^{3}, 2 x z^{2}, 3 y^{2} z\right\rangle$ over the surface M where M is the boundary of the solid bounded by the paraboloid $z=4-x^{2}-y^{2}$ and the $x y$-plane.
6. Compute $\int_{C} y d x+x d y+\left(x^{2}+y^{2}\right) d z$ where C is the positively oriented curve which bounds that part of the unit sphere in the first octant. Note that this is a closed curve consisting of three parts.

