Here are some problems to keep you awake at night. As usual these are not necessarily representative of the problems on the final, but should give you a decent review of the new material. You are on your own for the old material.

- 1. Consider two vector fields $\mathbf{F} = \langle -y, x \rangle$ and $\mathbf{G} = \langle \cos x + y, x 1 \rangle$ defined in the plane.
 - (a) Determine whether \mathbf{F} or \mathbf{G} is conservative. If conservative, produce a potential function.
 - (b) Let C be the oriented curve from (-3,0) to (1,0) given as follows: the straight line from (-3,0) to (-1,0), then the clockwise arc of the unit circle to the point (1,0). Compute the line integrals $\int_C \mathbf{F} \cdot d\mathbf{r}$ and $\int_C \mathbf{G} \cdot d\mathbf{r}$.
- 2. Let *M* be the surface of the potato chip which is that part of the surface z = xy inside the cylinder $x^2 + y^2 = 1$, and let *C* be its boundary positively oriented. If $\mathbf{F} = \langle 3xz y, xz + yz, x^2 + y^2 \rangle$, find $\oint_C \mathbf{F} \cdot d\mathbf{r}$.
- 3. Let *E* denote the portion of the solid sphere of radius *R* in the first octant, and let $\mathbf{F} = \langle 2x + y, y^2, \cos(xy) \rangle$. Compute the flux of **F** (surface integral) across the boundary of *E*, oriented by the outward-pointing normal vectors.
- 4. Let *C* denote the circle of radius *R* centered at the origin and oriented counterclockwise. Let $\mathbf{F} = \langle \arctan x + y^3, 2x - \sqrt[3]{y} \rangle$. Compute $\oint_C \mathbf{F} \cdot d\mathbf{r}$.
- 5. Compute the flux of the vector field $\mathbf{F} = \langle x^3, 2xz^2, 3y^2z \rangle$ over the surface M where M is the boundary of the solid bounded by the paraboloid $z = 4 x^2 y^2$ and the xy-plane.
- 6. Compute $\int_C y \, dx + x \, dy + (x^2 + y^2) \, dz$ where C is the positively oriented curve which bounds that part of the unit sphere in the first octant. Note that this is a closed curve consisting of three parts.