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1. (40) Some basic integrals. (Show all work)

1,1
(a) Calculate / / ¢V dy dx by first reversing the order of integration.
0 T

V2
(b) Use polar coordinates to evaluate /
0
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2. (20) Surface Integrals (Show all work)
(a) Let M be the portion of the cylinder given in cylindrical coordinates by
0<2z<3, r=1, 0<6<mn/2

Orient M by normal vectors pointing away from the z-axis. Let C' denote the boundary
of M oriented counterclockwise when viewing M from the point (5,5, 1). Express the
line integral j;c(yz, —212,0) odr as a surface integral over M. Do not evaluate.

(b) Write down a parametrization ® : D — S of the surface S which is the graph of the
function z = 3%+ 23 over a domain D. Then determine the normal vector associated
to this parametrization.
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3. (30) Let M be the same surface as in (2a), namely the portion of the cylinder given in
cylindrical coordinates by

0<2<3, r=1, 0<0<mx/2.

Orient M by normal vectors pointing away from the z-axis. By direct computation, calculate
the flux (surface integral) of F = (2x,y, —3z) across M using the natural parametrization
®(0,z) = (cosh,sinb, z).
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4. (30) (Show all work) Let C denote the oriented closed curve consisting of the line segment
from (0,0) to (v/2,0), followed by the arc of the circle 22 + y* = 2 from (v/2,0) to (1,1),
followed by the line segment from (1,1) to (0,0). By any means you like, find the value of

the line integral [ = j{ —y? dw + 2° dy.
c
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5. (10) Short Answer. (Put answers in blanks provided; No partial credit)

(a) The figure below shows a gradient vector field of a smooth function f and five level
curves of f. The values of f on two adjacent level curves differs by 10 units. Consider
the oriented curve C' which goes from the point A to the point B. What is a good
estimate of [,V fedr?
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Answer:

(b) (Show all work) Consider the vector field F = (32 + 2yz, 22 —y + 2,2 — 3y + 22)
and the unit cube ([0, 1] x [0, 1] x [0, 1]) in the first octant. Find the flux of F out of
the surface of this cube.

Answer:
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6. (20) Multiple Choice Circle the correct response. (No partial credit will be given)

()

Suppose that f(z,y) has continuous second partials on an open domain D, and that
(a,b) is a critical point of f lying in D. Suppose that f,,(a,b) = —2 and f,,(a,b) = 3.
What can be said about the critical point (a, b)?

A. nothing can be concluded from the information

. (a,b) is a local minimum of f C. (a,b) is a local maximum of f

D. (a,b) is a saddle point of f E. none of the above

2y°+1
For every smooth function f, the integral / / f(x,y) dx dy is equal to
o Jo

A f7 VYR f(a,y) dydo B. [ Y fa,y) dyda

C. fogf\l/mf(x,y)dydx D. flgfi/mf(x,y)dydx

E. none of the above
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Let C' be a curve from (0,0) to (2,1). According to the fundamental theorem for line
integrals /(y — 1)dz + (x + 2y)dy is equal to:
c

A 1 B. 2 C. 3 D. 4 E. It depends upon C'

If C'is the boundary of a planar domain D, and (' is oriented as in the statement of

Green's theorem, then % z*y dxr — y dy equals
c

: //D(2xy—1)dA B. //D(l—x?)dA C. //D(—x?)dA

D. none of the above
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