1. (40) Some basic integrals. (Show all work)
(a) Calculate $\int_{0}^{1} \int_{x}^{1} e^{x / y} d y d x$ by first reversing the order of integration.
(b) Use polar coordinates to evaluate $\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^{2}}} \frac{1}{1+x^{2}+y^{2}} d x d y$.

2. (20) Surface Integrals (Show all work)

(a) Let M be the portion of the cylinder given in cylindrical coordinates by

$$
0 \leq z \leq 3, \quad r=1, \quad 0 \leq \theta \leq \pi / 2 .
$$

Orient M by normal vectors pointing away from the z-axis. Let C denote the boundary of M oriented counterclockwise when viewing M from the point ($5,5,1$). Express the line integral $\oint_{C}\langle y z,-2 x z, 0\rangle \bullet d \mathbf{r}$ as a surface integral over M. Do not evaluate.
(b) Write down a parametrization $\Phi: D \rightarrow S$ of the surface S which is the graph of the function $x=y^{2}+z^{3}$ over a domain D. Then determine the normal vector associated to this parametrization.
3. (30) Let M be the same surface as in (2a), namely the portion of the cylinder given in cylindrical coordinates by

$$
0 \leq z \leq 3, \quad r=1, \quad 0 \leq \theta \leq \pi / 2
$$

Orient M by normal vectors pointing away from the z-axis. By direct computation, calculate the flux (surface integral) of $\mathbf{F}=\langle 2 x, y,-3 z\rangle$ across M using the natural parametrization $\boldsymbol{\Phi}(\theta, z)=\langle\cos \theta, \sin \theta, z\rangle$.
4. (30) (Show all work) Let C denote the oriented closed curve consisting of the line segment from $(0,0)$ to $(\sqrt{2}, 0)$, followed by the arc of the circle $x^{2}+y^{2}=2$ from $(\sqrt{2}, 0)$ to $(1,1)$, followed by the line segment from $(1,1)$ to $(0,0)$. By any means you like, find the value of the line integral $I=\oint_{C}-y^{3} d x+x^{3} d y$.
5. (10) Short Answer. (Put answers in blanks provided; No partial credit)
(a) The figure below shows a gradient vector field of a smooth function f and five level curves of f. The values of f on two adjacent level curves differs by 10 units. Consider the oriented curve C which goes from the point A to the point B. What is a good estimate of $\int_{C} \nabla f \bullet d \mathbf{r}$?

Answer: \qquad
(b) (Show all work) Consider the vector field $\mathbf{F}=\langle 3 x+2 y z, 2 x-y+z, x-3 y+2 z\rangle$ and the unit cube $([0,1] \times[0,1] \times[0,1])$ in the first octant. Find the flux of \mathbf{F} out of the surface of this cube.

Answer: \qquad
6. (20) Multiple Choice Circle the correct response. (No partial credit will be given)
(a) Suppose that $f(x, y)$ has continuous second partials on an open domain D, and that (a, b) is a critical point of f lying in D. Suppose that $f_{x x}(a, b)=-2$ and $f_{y y}(a, b)=3$. What can be said about the critical point (a, b) ?
A. nothing can be concluded from the information
B. (a, b) is a local minimum of f
C. (a, b) is a local maximum of f

D. (a, b) is a saddle point of f

E. none of the above
(b) For every smooth function f, the integral $\int_{0}^{1} \int_{0}^{2 y^{2}+1} f(x, y) d x d y$ is equal to
A. $\int_{0}^{3} \int_{0}^{\sqrt{(x-1) / 2}} f(x, y) d y d x$
B. $\int_{1}^{3} \int_{0}^{\sqrt{(x-1) / 2}} f(x, y) d y d x$
C. $\int_{0}^{3} \int_{\sqrt{(x-1) / 2}}^{1} f(x, y) d y d x$
D. $\int_{1}^{3} \int_{\sqrt{(x-1) / 2}}^{1} f(x, y) d y d x$
E. none of the above
(c) Let C be a curve from $(0,0)$ to $(2,1)$. According to the fundamental theorem for line integrals $\int_{C}(y-1) d x+(x+2 y) d y$ is equal to:
A. 1
B. 2
C. 3
D. 4
E. It depends upon C
(d)

If C is the boundary of a planar domain D, and C is oriented as in the statement of Green's theorem, then $\oint_{C} x^{2} y d x-y d y$ equals
A. $\iint_{D}(2 x y-1) d A$
B. $\iint_{D}\left(1-x^{2}\right) d A$
C. $\iint_{D}\left(-x^{2}\right) d A$
D. none of the above

This page for scrap work

This page for scrap work

NAME (Print!):
Check one: Shemanske (8:45): \qquad Daileda (11:15): \qquad

Math 11
3 December 2005
Final Exam

Problem	Points	Score
1	40	
2	20	
3	30	
4	30	
5	10	
6	20	
Total	150	

