1. (40) Some basic integrals. (Show all work)

(a) Calculate
$$\int_0^1 \int_x^1 e^{x/y} dy dx$$
 by first reversing the order of integration.

(b) Use polar coordinates to evaluate
$$\int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} \frac{1}{1+x^2+y^2} \, dx \, dy.$$

(a) Let M be the portion of the cylinder given in cylindrical coordinates by

 $0 \le z \le 3$, r = 1, $0 \le \theta \le \pi/2$.

Orient M by normal vectors pointing away from the z-axis. Let C denote the boundary of M oriented counterclockwise when viewing M from the point (5, 5, 1). Express the line integral $\oint_C \langle yz, -2xz, 0 \rangle \cdot d\mathbf{r}$ as a surface integral over M. Do not evaluate.

(b) Write down a parametrization $\Phi: D \to S$ of the surface S which is the graph of the function $x = y^2 + z^3$ over a domain D. Then determine the normal vector associated to this parametrization.

3. (30) Let M be the same surface as in (2a), namely the portion of the cylinder given in cylindrical coordinates by

$$0 \le z \le 3, \qquad r = 1, \qquad 0 \le \theta \le \pi/2.$$

Orient M by normal vectors pointing away from the z-axis. By direct computation, calculate the flux (surface integral) of $\mathbf{F} = \langle 2x, y, -3z \rangle$ across M using the natural parametrization $\Phi(\theta, z) = \langle \cos \theta, \sin \theta, z \rangle$.

4. (30) (Show all work) Let C denote the oriented closed curve consisting of the line segment from (0,0) to $(\sqrt{2},0)$, followed by the arc of the circle $x^2 + y^2 = 2$ from $(\sqrt{2},0)$ to (1,1), followed by the line segment from (1,1) to (0,0). By any means you like, find the value of the line integral $I = \oint_C -y^3 dx + x^3 dy$.

- 5. (10) Short Answer. (Put answers in blanks provided; No partial credit)
 - (a) The figure below shows a gradient vector field of a smooth function f and five level curves of f. The values of f on two adjacent level curves differs by 10 units. Consider the oriented curve C which goes from the point A to the point B. What is a good estimate of $\int_C \nabla f \cdot d\mathbf{r}$?

- Answer: _____
- (b) (Show all work) Consider the vector field $\mathbf{F} = \langle 3x + 2yz, 2x y + z, x 3y + 2z \rangle$ and the unit cube $([0, 1] \times [0, 1] \times [0, 1])$ in the first octant. Find the flux of \mathbf{F} out of the surface of this cube.

Answer: _

- 6. (20) Multiple Choice Circle the correct response. (No partial credit will be given)
 - (a) Suppose that f(x, y) has continuous second partials on an open domain D, and that (a, b) is a critical point of f lying in D. Suppose that $f_{xx}(a, b) = -2$ and $f_{yy}(a, b) = 3$. What can be said about the critical point (a, b)?
 - A. nothing can be concluded from the information
 - **B**. (a, b) is a local minimum of f **C**. (a, b) is a local maximum of f

D. (a,b) is a saddle point of f **E**. none of the above

 $\boldsymbol{\mathsf{E}}.$ none of the above

A. 1 B. 2 C. 3 D. 4 E. It depends upon C

(d) If C is the boundary of a planar domain D, and C is oriented as in the statement of Green's theorem, then $\oint_C x^2 y \, dx - y \, dy$ equals

A.
$$\iint_{D} (2xy-1) dA$$
 B. $\iint_{D} (1-x^{2}) dA$ **C**. $\iint_{D} (-x^{2}) dA$

D. none of the above

This page for scrap work

This page for scrap work

NAME (Print!): _____

Check one: Shemanske (8:45): _____ Daileda (11:15): _____

Math 11

3 December 2005 Final Exam

Problem	Points	Score
1	40	
2	20	
3	30	
4	30	
5	10	
6	20	
Total	150	