
Math 11
Fall 2016
Section 1

Monday, September 26, 2016

First, some important points from the last class:

For f : R2 → R, the graph of f is a surface in R3, the set of all points (x, y, f(x, y)).

The level curves of f are curves f(x, y) = k in R2. We can think of them as projections
onto the xy-plane of horizontal slices of the graph of f .

We can draw a contour plot of f by drawing level curves f(x, y) = k for equally spaced
values of k. The contour plot is in R2 and is like a topographical map of the graph of f .

By looking at the contour plot we can see where the graph of f is steepest, what direction
the surface slopes in, and where high and low points are.

For f : R3 → R, the graph of f is in R4, the set of all points (x, y, z, f(x, y, z)). We
cannot draw it.

The level surfaces of f are surfaces f(x, y, z) = k in R3. We can draw them.

If f(x, y, z) is the temperature at (x, y, z), the level surfaces of f are isotherms. If f gives
barometric pressure, the level surfaces are isobars.

For f : Rn → R, the graph of f is in Rn+1, the set of all points (x, y, z, . . . , f(x, y, z, . . . )).
The level sets of f are in Rn. They have equations f(x, y, z, . . . ) = k.

Level curves and level surfaces are two kinds of level sets.
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Definition:
lim

(x,y,z)→(x0,y0,z0
f(x, y, z) = L

means for every ε > 0 [desired output accuracy] there is a δ > 0 [required input accuracy]
such that, for every (x, y, z),distance between (x, y, z) and (x0, y0, z0)︷ ︸︸ ︷

|(x, y, z)− (x0, y0, z0)| < δ & (x, y, z) 6= (x0, y0, z0)︸ ︷︷ ︸
within input accuracy

 =⇒ |f(x, y, z)− L| < ε︸ ︷︷ ︸
within output accuracy

.

Definition: The function f(x, y, z) is continuous at (x0, y0, z0) if

lim
(x,y,z)→(x0,y0,z0)

f(x, y, z) = f(x0, y0, z0).

The definitions for f : R2 → R, and for f : Rn → R, are similar.

If F : Rm → Rn, we take limits coordinatewise. So if

F (x, y) = (F1(x, y), F2(x, y)) ,

then

lim
(x,y)→(x0,y0)

F (x, y) =

(
lim

(x,y)→(x0,y0)
F1(x, y), lim

(x,y)→(x0,y0)
F2(x, y)

)
.

To show a limit does not exist, we can show two different ways of approach that lead to
different limits. (This is like showing the right-hand and left-hand limits are unequal.)

To show a limit exists (and equals L), it is not enough to check different approaches.
Some tools you can use to show limits exist:

Breaking up an expression as a sum, product, composition. . .

The squeeze theorem.

Polar coordinates for limits as (x, y)→ (0, 0).

L’Hôpital’s rule, but be warned that this is only if you have already reduced the problem
to the limit of a function of one variable. This is an important warning. We do not have a
two-dimensional version of L’Hôpital’s rule.
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Preview: (We will discuss differentiability later.)

Definition: If the graphs of f : R2 → R and P : R2 → R are tangent at the point
(x0, y0, z0), and

P(x, y) = ax+ by + d = 〈a, b〉 · 〈x, y〉+ d

(in other words, the graph of P is a tangent plane to the graph of f), then we say f is
differentiable at (x0, y0), and

f ′(x0, y0) = 〈a, b〉 .

Note: This is just like the case for f : R→ R. If the graph of the function

`(x) = ax+ d

is the tangent line to the graph of f at the point (x0, y0), then the derivative of f at that
point is the slope of that line:

f ′(x0) = a.

This is also just like the case for ~f : R→ Rn: The tangent approximation to ~f at t = t0
is

~r(t) = (t− t0)~v0 + ~r0 = t~v0 + (~r0 − t0~v)

where
~r ′(t0) = ~v0.

General idea: Suppose f is a function, and T is a function of the form

T (x) = Ax+D

where A and D are constants of the appropriate type (scalars or vectors), and multiplication
can mean ordinary multiplication, scalar multiplication, or dot product, as appropriate. (The
input x may also be a scalar or a vector.) If the graphs of f and T are tangent where x = x0,
then

f ′(x0) = A.
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Warm-up problems:

(1.) Let P(x, y) = 4x + 2y − 5. Find a vector parametric equation for ` the line of
intersection of the graph of P and the plane x = 2. What is the slope (vertical rise over
horizontal run, regarding the z-axis as vertical) of this line?

The graph of P has equation z = 4x+ 2y−5 Setting x = 2 and y = t we have z = 2t+ 3,
so a vector parametric equation is

~r = 〈2, t, 2t+ 3〉 = 〈2, 0, 3〉+ t 〈0, 1, 2〉 .

Since 〈1, 0, 2〉 is parallel to `, and has horizontal projection of length 1 and vertical projection
of length 2, the slope of ` (regarding the z-axis as vertical) is 2.

(2.) Let f(x, y) = x2 + y2. Let h(y) = f(2, y). Find h′(1). What does this number say
about the curve γ formed by intersecting the graph of f with the plane x = 2?

h(y) = f(2, y) = 4 + y2 so h′(y) = 2y and h′(1) = 2. Since γ is given by x = 2 and
z = f(2, y) = h(y), the derivative h′(1) is the slope of γ (regarding the z-axis as vertical)
when y = 1.

(3.) Show that (2, 1, 5) lies on both ` and γ.

Putting t = 1 into the equation of ` gives 〈2, 1, 5〉, so (2, 1, 5) is on `. From f(2, 1) = 5
we see (2, 1, 5) is on the graph of f ; since it is also in the plane x = 2, it is on γ.

(4.) What can we say about the geometric relation of ` and γ?

Both ` and γ lie in the plane x = 2, parallel to the yz plane, and contain the point
(2, 1, 5). At that point, ` has slope 2 (by (1)), and γ has slope 2 (by(2)). Since they lie in
the same plane and have the same slope at the point (2, 1, 5), they are tangent at that point.
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Today: Partial Derivatives

Example: Consider the surface S with equation f(x, y) = x2 + y2.
How can we describe the slope (treating the z-axis as vertical) of S?
As an example, consider the point (2, 1, 5) on S.

If we slice S in the plane x = 2, we get a parabola, z = 4 + y2, and we can compute the
rate of change of z with respect to y when y = 1,

dz

dy

∣∣∣
y=1

=
d

dy
(4 + y2)

∣∣∣
y=1

= (2y)
∣∣∣
y=1

= 2

If we slice S in the plane y = 1, we get a parabola, z = x2 + 1, and we can compute the
rate of change of z with respect to x when x = 2,

dz

dx

∣∣∣
x=2

=
d

dx
(x2 + 1)

∣∣∣
x=2

= (2x)
∣∣∣
x=2

= 4

Geometrically, these are the slopes (vertical rise over horizontal run, treating the z-axis
as vertical) of the tangent lines to S at (2, 1, 5) in the planes y = 1 and x = 2.

These are the partial derivatives of f(x, y) with respect to x and with respect to y.

5



Definition: The partial derivative of f(x, y) with respect to x at the point (x0, y0) is
the derivative of the function of x we get by setting y to have constant value y0:

∂f

∂x
(x0, y0) = fx(x0, y0) = Dxf(x0, y0)︸ ︷︷ ︸

notation

=
d

dx
(f(x, y0))

∣∣∣
x=x0

= lim
h→0

f(x0 + h, y0)− f(x0, y0)

h
.

Example: The partial derivatives of f(x, y) = x2 − y2, computed by treating the other
variable as a constant, are

∂f

∂x
(x, y) = 2x

∂f

∂y
(x, y) = −2y.

fx(3, 1) = 6 fy(3, 1) = −2.

If z = f(x, y) we may also call the partial derivatives
∂z

∂x
and

∂z

∂y
.

Example: If z = y sin(xy) then

∂z

∂x
= y2 cos(xy)

∂z

∂x
= sin(xy) + xy cos(xy)

Definition: The partial derivative of f(x, y, z) with respect to x at the point (x0, y0, z0)
is the derivative of the function of x we get by setting y and z to have constant values y0
and z0:

∂f

∂x
(x0, y0, z0) = fx(x0, y0, z0) = Dxf(x0, y0, z0)︸ ︷︷ ︸

notation

=
d

dx
(f(x, y0, z0))

∣∣∣
x=x0

.

Example: The partial derivatives of f(x, y, z) = xyz, computed by treating the other
variables as a constant, are

∂f

∂x
(x, y, z) = yz

∂f

∂y
(x, y, z) = xz

∂f

∂z
(x, y, z) = xy.
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The partial derivative of f are themselves functions from R2 → R, and we can take their
partial derivatives, called the second partial derivatives of f .

fxx = (fx)x =
∂

∂x

(
∂f

∂x

)
=
∂2f

∂x2

fxy = (fx)y =
∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x

Notice the order of x and y in the different notations.

Example: Find all the first and second partial derivatives.

f(x, y) = x2 + 2xy − y2

fx(x, y) = 2x+ 2y

fxx(x, y) = 2 fxy(x, y) = 2

fy(x, y) = 2x− 2y

fyy(y, x) = −2 fyx(x, y) = 2

f(x, y) = ex sin(xy)

fx(x, y) = ex sin(xy) + yex cos(xy)

fxx(x, y) = ex sin(xy) + yex cos(x, y) + yex cos(x, y)− y2ex sin(x, y)

fxy(x, y) = xex cos(x, y) + ex cos(x, y)− xyex sin(x, y)

fy(x, y) = xex cos(xy)

fyy(x, y) = −x2ex sin(xy)

fyx(x, y) = ex cos(xy) + xex cos(xy)− xyex sin(xy)

Notice something?

Theorem (Clairaut’s theorem): If suitable hypotheses hold (the first and second partial
derivatives of f are continuous near the point in question), the corresponding mixed second
partial derivatives of a function are always equal. That is,

fxy = fyx fxz = fzx fyz = fzy
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Example: The motion of a vibrating string, anchored on the x-axis at points x = a
and x = b and vibrating in the xy-plane, may be described by a function f(x, t) giving the
y-coordinate at time t of the point on the string with x-coordinate equal to x.

At a particular time t0 and point on the string x0, the physical significance of the first
and second partial derivatives is:

fx(x, t) is he slope of the string at point x.

ft(x, t) is the velocity of point x on the string.

fxx(x, t) is the second derivative of the y-coordinate of the string (this determines the
curvature).

fxt(x, t) is the rate at which the slope of the string is changing over time.

ftx(x, t) is the rate at which the instantaneous velocity, at a fixed time, changes with
respect to distance along the string.

ftt(x, t) is the acceleration of point x on the string.

Why does it make sense that fxy = fyx?

Why does it make sense that in this physical situation f must satisfy the wave equation,

ftt = c2fxx

for some constant c?

Check that f(x, t) = sin(x) cos(ct) satisfies this equation.

ft(x, t) = −c sin(x) sin(ct) fx(xt) = cos(x) cos(ct)

ftt(x, t) = −c2 sin(x) cos(ct) fxx(x, t) = − sin(x) cos(ct)

ftt = −c2 sin(x) cos(ct) = c2(− sin(x) cos(ct)) = c2fxx.
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We can use implicit differentiation to find partial derivatives.

Example: Find the slope (treating the z-axis as vertical) of the tangent line to the
sphere x2 + y2 + z2 = 50 at the point (3, 4, 5) that lies in the plane x = 3.

Method 1: Write z as a function of x and y, and then find the partial derivative:

z = ±
√

50− x2 − y2 =
√

50− x2 − y2

∂z

∂y
=

1

2
(50− x2 − y2)−

1
2 (−2y) = −y(50− x2 − y2)−

1
2

∂z

∂y

∣∣∣
(x,y)=(3,4)

= −4(50− 9− 16)−
1
2 =
−4

5
.

Method 2: Implicitly differentiate the equation with respect to y. We are taking partial
derivatives with respect to y, treating x as a constant, and z as a function of y.

x2 + y2 + z2 = 50

0 + 2y + 2z
∂z

∂y
= 0

∂z

∂y
=
−y
z

∂z

∂y

∣∣∣
(x,y,z)=(3,4,5)

=
−4

5
.

Example: Find a vector in the direction of this tangent line.

This line lies in the plane x = 3, goes through the point (3, 4, 5), and has slope
−4

5
, so

if y changes by 1, then z changes by
−4

5
(and x does not change at all). This tells us the

vector

〈
0, 1,
−4

5

〉
gives the direction of the line, so an equation is

〈x, y, z〉 = 〈3, 4, 5〉+ t

〈
0, 1,
−4

5

〉
.
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Example: Suppose that f(x, y) denotes the average temperature at points on the earth
whose latitude is x and altitude is y, if we identify latitudes north of the equator as positive
and south of the equator as negative.

For what values of (x, y) do you expect fx to be positive? For what values of (x, y) do
you expect fx to be negative? Why?

For what values of (x, y) do you expect fy to be positive? For what values of (x, y) do
you expect fy to be negative? Why?

Example: Below is a contour plot for a function f(x, y). The value of f increases in
the positive direction along both the x-axis and the y-axis. Compare the partial derivatives
of f at the points (−10, 15), (0, 15) and (15,−15). (At which of these points are fx and fy
largest or smallest; positive or negative?)
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Example: The surface S has equation z = x2y−y2x. Find the line that lies in the plane
y = 2 and is tangent to S at the point (1, 2,−2).

Example: Show that the function

f(x, y) = 5e3x+1 sin(3y − 4)

satisfies Laplace’s equation,
∂2f

∂x2
+
∂2f

∂y2
= 0.
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Example: We saw that the direction of the line in the plane x = 3 tangent to the sphere

x2 + y2 + z2 = 50 at the point (3, 4, 5) is given by the vector

〈
0, 1,
−4

5

〉
.

Find a vector giving the direction of the line in the plane y = 4 tangent to the sphere
x2 + y2 + z2 = 50 at the point (3, 4, 5).

Use this information to find an equation for the plane that is tangent to the sphere
x2 + y2 + z2 = 50 at the point (3, 4, 5).
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