Mon Sep 11, 2023
|
2.1, 2.2: Coordinates and vectors in R^3, spheres
|
12am
|
Wed Sep 13, 2023
|
2.3, 2.4: Dot and cross products
|
12am
|
Fri Sep 15, 2023
|
2.5: Lines and planes
|
12am
|
Mon Sep 18, 2023
|
3.1, 3.2: Space curves
|
12am
|
Wed Sep 20, 2023
|
3.3, 3.4: Arclength (no curvature, no normal/binormal vectors) and kinematics (no tangential and normal components of acceleration)
|
12am
|
Fri Sep 22, 2023
|
4.1, 4.2: Functions of two variables
|
12am
|
Mon Sep 25, 2023
|
4.3: Partial derivatives
|
12am
|
Wed Sep 27, 2023
|
4.4: Tangent planes and linear approximations
|
12am
|
Fri Sep 29, 2023
|
4.5: Chain rule (no implicit function theorem)
|
12am
|
Mon Oct 2, 2023
|
4.6: Directional derivative and gradient
|
12am
|
Wed Oct 4, 2023
|
4.7: Maxima and minima
|
12am
|
Exam 1: covers through 2.1-4.5
|
4pm
to
6pm
|
Fri Oct 6, 2023
|
4.8: Lagrange multipliers
|
12am
|
Mon Oct 9, 2023
|
5.1: Double integrals over rectangles
|
12am
|
Wed Oct 11, 2023
|
5.2: Double integrals over general regions
|
12am
|
Fri Oct 13, 2023
|
5.4: Triple integrals
|
12am
|
Mon Oct 16, 2023
|
5.3, 5.5: Polar and cylindrical coordinates
|
12am
|
Wed Oct 18, 2023
|
5.5: Spherical coordinates
|
12am
|
Fri Oct 20, 2023
|
5.7: Change of variables, Jacobians
|
12am
|
Mon Oct 23, 2023
|
6.1, 6.2: Vector fields, scalar line integrals
|
12am
|
Wed Oct 25, 2023
|
6.2: Vector line integrals
|
12am
|
Exam 2: covers 4.5-5.7
|
4pm
to
6pm
|
Fri Oct 27, 2023
|
6.3: Fundamental theorem of line integrals
|
12am
|
Mon Oct 30, 2023
|
6.4: Green's theorem
|
12am
|
Wed Nov 1, 2023
|
6.5: Divergence and curl
|
12am
|
Fri Nov 3, 2023
|
6.6: Parametrized surfaces
|
12am
|
Mon Nov 6, 2023
|
6.6: Surface integrals
|
12am
|
Wed Nov 8, 2023
|
6.7: Stokes's theorem
|
12am
|
Fri Nov 10, 2023
|
6.8: Divergence theorem
|
12am
|
Mon Nov 13, 2023
|
Wrap up
|
12am
|
Fri Nov 17, 2023
|
Final Exam: comprehensive
|
11:30am
to
2:30pm
|