Mon Sep 11, 2023

2.1, 2.2: Coordinates and vectors in R^3, spheres

12am

Wed Sep 13, 2023

2.3, 2.4: Dot and cross products

12am

Fri Sep 15, 2023

2.5: Lines and planes

12am

Mon Sep 18, 2023

3.1, 3.2: Space curves

12am

Wed Sep 20, 2023

3.3, 3.4: Arclength (no curvature, no normal/binormal vectors) and kinematics (no tangential and normal components of acceleration)

12am

Fri Sep 22, 2023

4.1, 4.2: Functions of two variables

12am

Mon Sep 25, 2023

4.3: Partial derivatives

12am

Wed Sep 27, 2023

4.4: Tangent planes and linear approximations

12am

Fri Sep 29, 2023

4.5: Chain rule (no implicit function theorem)

12am

Mon Oct 2, 2023

4.6: Directional derivative and gradient

12am

Wed Oct 4, 2023

4.7: Maxima and minima

12am

Exam 1: covers through 2.14.5

4pm
to
6pm

Fri Oct 6, 2023

4.8: Lagrange multipliers

12am

Mon Oct 9, 2023

5.1: Double integrals over rectangles

12am

Wed Oct 11, 2023

5.2: Double integrals over general regions

12am

Fri Oct 13, 2023

5.4: Triple integrals

12am

Mon Oct 16, 2023

5.3, 5.5: Polar and cylindrical coordinates

12am

Wed Oct 18, 2023

5.5: Spherical coordinates

12am

Fri Oct 20, 2023

5.7: Change of variables, Jacobians

12am

Mon Oct 23, 2023

6.1, 6.2: Vector fields, scalar line integrals

12am

Wed Oct 25, 2023

6.2: Vector line integrals

12am

Exam 2: covers 4.55.7

4pm
to
6pm

Fri Oct 27, 2023

6.3: Fundamental theorem of line integrals

12am

Mon Oct 30, 2023

6.4: Green's theorem

12am

Wed Nov 1, 2023

6.5: Divergence and curl

12am

Fri Nov 3, 2023

6.6: Parametrized surfaces

12am

Mon Nov 6, 2023

6.6: Surface integrals

12am

Wed Nov 8, 2023

6.7: Stokes's theorem

12am

Fri Nov 10, 2023

6.8: Divergence theorem

12am

Mon Nov 13, 2023

Wrap up

12am

Fri Nov 17, 2023

Final Exam: comprehensive

11:30am
to
2:30pm
