Mon Sep 16, 2024
|
2.1, 2.2: Coordinates and vectors in R^3, spheres
|
12am
|
Wed Sep 18, 2024
|
2.3, 2.4: Dot and cross products
|
12am
|
Fri Sep 20, 2024
|
2.5: Lines and planes
|
12am
|
Mon Sep 23, 2024
|
3.1-3.4: Space curves, Arclength (no curvature, no normal/binormal vectors), and kinematics (no tangential and normal components of acceleration)
|
12am
|
Wed Sep 25, 2024
|
4.1, 4.2: Functions of two variables
|
12am
|
Fri Sep 27, 2024
|
4.3: Partial derivatives
|
12am
|
Mon Sep 30, 2024
|
4.4: Tangent planes and linear approximations
|
12am
|
Wed Oct 2, 2024
|
4.5: Chain rule (no implicit function theorem)
|
12am
|
Fri Oct 4, 2024
|
4.6: Directional derivative and gradient
|
12am
|
Mon Oct 7, 2024
|
Exam 1: covers 2.1-4.5
|
12am
|
Wed Oct 9, 2024
|
4.7: Maxima and minima
|
12am
|
Fri Oct 11, 2024
|
4.8: Lagrange multipliers
|
12am
|
Mon Oct 14, 2024
|
5.1: Double integrals over rectangles
|
12am
|
Wed Oct 16, 2024
|
5.2: Double integrals over general regions
|
12am
|
Fri Oct 18, 2024
|
5.3: Polar coordinates and triple integrals
|
12am
|
Mon Oct 21, 2024
|
5.5: Spherical and cylindrical coordinates
|
12am
|
Wed Oct 23, 2024
|
5.7: Change of variables, Jacobians
|
12am
|
Fri Oct 25, 2024
|
6.1, 6.2: Vector fields, scalar line integrals
|
12am
|
Mon Oct 28, 2024
|
Exam 2: covers 4.6-5.7
|
12am
|
Wed Oct 30, 2024
|
6.2: Vector line integrals
|
12am
|
Fri Nov 1, 2024
|
6.3: Fundamental theorem of line integrals
|
12am
|
Mon Nov 4, 2024
|
6.4: Green's theorem
|
12am
|
Wed Nov 6, 2024
|
6.5: Divergence and curl
|
12am
|
Fri Nov 8, 2024
|
6.6: Parametrized surfaces
|
12am
|
Mon Nov 11, 2024
|
6.6: Surface integrals
|
12am
|
Wed Nov 13, 2024
|
6.7: Stokes's theorem
|
12am
|
Fri Nov 15, 2024
|
6.8: Divergence theorem
|
12am
|
Mon Nov 18, 2024
|
Wrap up
|
12am
|
Fri Nov 22, 2024
|
Final Exam: comprehensive
|
3pm
to
6pm
|