
Chapter 8

Orders

8.1 Integral structures

Inside the rational numbers Q are the integers Z; inside a number field is its ring
of integers. What happens if we concern ourselves with a notion of integrality for
possibly noncommutative algebras? In this chapter, we consider some basic questions
of this nature that work without hypothesis on the field.

First we have to understand the linear algebra aspects: these are modules inside a
vector space. Then the algebra structure is a multiplication law on this lattice, and is
called an order because something.

Some properties of orders can be deduced from the commutative case: orders still
consist of integral elements, satisfying a monic polynomial with coefficients in Z.

The matrix ring over a field are endomorphisms of a vector space; the orders in a
matrix ring should look like endomorphisms of a lattice (perhaps with extra structure).

Do some examples over Z.

8.2 Lattices

Throughout this chapter, let R be a noetherian domain with field of fractions F . To
avoid trivialities, we assume R 6= F .

Definition 8.2.1. Let V be a finite-dimensional F -vector space. An R-lattice of V is
a finitely generated R-submodule M ⊆ V with MF = V .

Remark 8.2.2. Other authors omit the second condition in the definition of anR-lattice
and say that I is full if MF = V . We will not encounter R-lattices that are not full
(and when we do, we call them finitely generated R-submodules), so we avoid this
added nomenclature.

By definition, an R-lattice contains a basis of V , and it can be thought of an R-
submodule that “allows bounded denominators”, as follows.

Lemma 8.2.3. Let M be an R-lattice. Then for any y ∈ V , there exists 0 6= r ∈ R
such that ry ∈ M . Moreover, if J is a finitely generated R-submodule of V , then
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88 CHAPTER 8. ORDERS

there exists 0 6= r ∈ R such that rJ ⊆ M , and J is an R-lattice if and only if there
exists 0 6= r ∈ R such that rM ⊆ J ⊆ r−1M .

Proof. Since FM = V , the R-lattice M contains an F -basis x1, . . . , xn for V , so in
particular M ⊃ Rx1 ⊕ · · · ⊕ Rxn. Writing y ∈ V in the basis x1, . . . , xn, clearing
denominators we see that there exists 0 6= r ∈ R such that rx ∈M .

For the second statement, let yi be a set of R-module generators for J ; then there
exist ri ∈ R such that riyi ∈ M hence 0 6= r =

∏
i ri satisfies rJ ⊆ M , so

J ⊆ r−1M . Repeating this argument with M interchanged with J and taking the
product of the two, we have the result.

8.3 Orders

Let B be an F -algebra.

Definition 8.3.1. An R-order O ⊆ B is an R-lattice that is also a subring of B.

In particular, if O is an R-order then we insist that 1 ∈ O.

8.3.2. An R-algebra is a ring O equipped with an embedding R ↪→ O whose image
lies in the center of O. An R-order O is an R-algebra, and if O is an R-algebra that
is finitely generated as an R-module, then O is an R-order of B = O ⊗R F .

Example 8.3.3. The matrix algebra Mn(F ) has the R-order Mn(R). The subring
R[G] =

⊕
g Rg is an R-order in the group ring F [G].

Example 8.3.4. Let a, b ∈ R\{0} and consider the quaternion algebra B =
(
a, b

F

)
.

Then O = R⊕Ri⊕Rj ⊕Rij is an R-order.

Let I ⊆ B be an R-lattice in the F -algebra B.

8.3.5. An important construction of orders comes as follows. Define the set

OL(I) = {α ∈ B : αI ⊆ I}.

Then OL(I) is an R-submodule of B which is a ring. We show it is also an R-lattice.
For any α ∈ B, by Lemma 8.2.3 there exists 0 6= r ∈ R such that r(αI) ⊆ I , hence
OL(I)F = B. Also by this lemma, there exists 0 6= s ∈ R such that s = s · 1 ∈ I;
thus OL(I)s ⊆ I so OL(I) ⊆ s−1I . Since R is noetherian and s−1I is an R-lattice
so finitely generated, we conclude that OL(I) is finitely generated and is thus an R-
lattice.

It follows that every F -algebra B has an R-order, since if B =
⊕

i Fαi then
I =

⊕
iRαi is an R-lattice.

Definition 8.3.6. The order

OL(I) = {α ∈ B : αI ⊆ I}

is called the left order of I . We similarly define the right order of I by

OR(I) = {α ∈ B : Iα ⊆ I}.
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Orders are composed of integral elements, defined as follows. If α ∈ B, we denote
by R[α] =

∑
dRα

d the (commutative) R-subalgebra of B generated by α.

Definition 8.3.7. An element α ∈ B is integral over R if α satisfies a monic polyno-
mial with coefficients in R.

Lemma 8.3.8. For α ∈ B, the following are equivalent:

(i) α is integral over R;

(ii) R[α] is a finitely generated R-module;

(iii) α is contained in a subring A which is a finitely generated R-module.

Proof. If α ∈ B is integral and is a root of f(x) = xn+an−1x
n−1 + · · ·+a0 ∈ R[x],

then obviously R[α] = R + Rα + · · · + Rαn−1. Conversely, if R[α] is finitely
generated, then α satisfies the characteristic polynomial of left multiplication by α on
a basis for B consisting of elements of O. This proves (i)⇔ (ii).

For the final equivalence, we see that (ii) ⇒ (iii) is immediate, and for the con-
verse, if O ⊆ B is an R-order, then every α ∈ O is integral over R, since R[α] is a
submodule of O so (since R is noetherian) R[α] is finitely generated.

Corollary 8.3.9. If O is an R-order, then every α ∈ O is integral over R.

We say R is integrally closed (in F ) if any α ∈ F integral over R has α ∈ R.
Inside the field F , the set of elements integral over R (the integral closure of R

in F ) forms a ring: if α, β are integral over R then α + β and αβ are integral since
they lie in R[α, β] which is a finitely generated submodule of F . This ring is itself
integrally closed.

Lemma 8.3.10. Suppose that R is integrally closed. Then α ∈ B is integral over R
if and only if the minimal polynomial of α over F has coefficients in R.

Proof. Let f(x) ∈ R[x] be a monic polynomial that α satisfies, and let g(x) ∈ F [x]
be the minimal polynomial of α. LetK be a splitting field for g(x), and let α1, . . . , αn
be the roots of g(x) in K. Since g(x) | f(x), each such αi is integral over R, and the
set of elements in K integral over R forms a ring, so each coefficient of g is integral
over R and belongs to F ; but since R is integrally closed, these coefficients must
belong to R, so g(x) ∈ R[x].

Corollary 8.3.11. IfB is an F -algebra with a standard involution, andR is integrally
closed, then α ∈ B is integral over R if and only if trd(α), nrd(α) ∈ R.

The integral closure of R in F is the largest ring containing integral elements.
Accordingly, we make the following more general definition.

Definition 8.3.12. An R-order is maximal if it is not properly contained in another
R-order.
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If B is a commutative F -algebra and R is integrally closed in F , then the inte-
gral closure S of R in K is integrally closed and therefore S is a maximal R-order
in K. However, if B is noncommutative, then the set of elements in B integral over
R is no longer necessarily itself a ring, and so the theory of maximal orders is more
complicated. (This may seem counterintuitive at first, but certain aspects of the non-
commutative situation are indeed quite different!)

Example 8.3.13. Let B = M2(Q) and let α =
(

0 1/2
0 0

)
and β =

(
0 0

1/2 0

)
.

Then α2 = β2 = 0, so α, β are integral over R = Z, but α + β is not integral since
nrd(α + β) = −1/4 (Corollary 8.3.11). Such a counterexample does not require the
existence of zerodivisors: see Exercise 8.9.

The problem in the noncommutative setting is that althoughR[α] andR[β] may be
finitely generated as R-modules, this need not be the case for the R-algebra generated
by α and β: indeed, in the example above, it is not!

The structure of (maximal) orders in a quaternion algebra over the domains of
arithmetic interest is the subject of the second Part of this text. To conclude this
chapter, we discuss some special cases over the next few sections.

8.4 Orders in separable algebras

We have also the following characterization of orders in separable algebras.

Lemma 8.4.1. LetO ⊆ B be a subring of a separable F -algebra B such thatOF =
B. Then O is an R-order if and only if every α ∈ O is integral.

Proof. Let O ⊆ B be a subring of an F -algebra B such that OF = B. Recall
that a separable F -algebra is a semisimple F -algebra such that the symmetric bilinear
pairing (α, β) 7→ trd(αβ) is nondegenerate.

We need to show that O is finitely generated. Let α1, . . . , αn be an F -basis for B
contained in O. If β ∈ O then β =

∑
i aiαi with ai ∈ F . We have βαi ∈ O since

O is a ring, so trd(βαi) =
∑
j aj trd(αjαi) with trd(αjαi) ∈ R. Now since B is

separable, the matrix (trd(αiαj))i,j=1,...,n is invertible, say r = det(trd(αiαj)), so
we can solve these equations for aj using Cramer’s rule and we find that aj ∈ r−1R.
Consequently O ⊆ r−1(Rα1 ⊕ · · · ⊕ Rαn) is a submodule of a finitely generated
module so (since R is noetherian) we have that O is finitely generated.

Remark 8.4.2. It follows from Lemma 8.4.1 that a separable F -algebra B has a max-
imal order. By Paragraph 8.3.5, B has an R-order O (since it has a lattice, taking
the R-span of any F -basis), so the collection of R-orders containing O is nonempty.
Given any chain of R-orders containing O, by Lemma 8.4.1 the union of these or-
ders is again an R-order. Since R is noetherian, there exists a maximal element in
any chain. [[Ref in comment]] (More generally, the conclusion follows by applying
Zorn’s lemma.) See also Proposition 14.2.17.
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8.5 Orders in a matrix ring

Next, we study orders in a matrix ring. The matrix ring over F is just the endomor-
phism ring of a finite-dimension vector space overF , and we seek a similar description
for orders as endomorphism rings of lattices, following Paragraph 8.3.5.

Let V be an F -vector space with dimF V = n and let B = EndF (V ). Choosing
a basis of V gives an identification B = EndF (V ) ' Mn(F ). Given an R-lattice
I ⊆ V , we define

EndR(I) = {f ∈ EndF (V ) : f(I) ⊆ I} ⊂ B.

Note that the definition of End(I) differs from that of the left order (8.3.5): we do not
take B = V , but rather, consider endomorphisms of lattices of smaller rank.

Example 8.5.1. If V = Fx1 ⊕ · · · ⊕ Fxn and I = Rx1 ⊕ · · · ⊕Rxn, then we have
EndR(I) ' Mn(R).

More generally, if I is completely decomposable, i.e. I = a1x1 ⊕ · · · ⊕ anxn
with ai projective R-submodules of F , then EndR(J) ⊆ Mn(F ) consists of those
matrices whose ijth entry lies in HomR(ai, aj) ⊆ HomF (F, F ) = F . For example,
if n = 2 then

EndR(I) '
(

R HomR(a2, a1)
HomR(a1, a2) R

)
⊂ M2(F ).

Lemma 8.5.2. Let I be an R-lattice of V . Then EndR(I) is an R-order in B =
EndF (V ).

Proof. As in Paragraph 8.3.5, we have EndR(I)F = B. Let α1, α2, . . . , αn be an
F -basis for V and let J = Rα1 ⊕ · · · ⊕ Rαn. Then by Lemma 8.2.3 there exists
0 6= r ∈ R such that rJ ⊆ I ⊆ r−1J . Therefore EndR(rJ) = rn EndR(J) ⊆
EndR(I) ⊆ r−n EndR(J), and so EndR(I) is an R-order in B.

Lemma 8.5.3. LetO ⊆ B = EndF (V ) be anR-order. ThenO ⊆ EndR(I) for some
R-lattice I ⊆ V .

Proof. Let J be any R-lattice in V , and let I = {α ∈ J : Oα ⊆ J}. Then I is an
R-submodule of J with FI = V (as in Paragraph 8.3.5), so I is an R-lattice in V and
O ⊆ EndR(I).

Corollary 8.5.4. If R is a PID, then every maximal R-order O ⊆ B ' Mn(F ) is
conjugate in B to Mn(R).

Proof. The isomorphism B ' Mn(F ) arises from a basis x1, . . . , xn; letting J =⊕
iRxi we have EndR(J) ' Mn(R). Now the R-order Mn(R) is maximal by

Exercise 8.6, since a PID is integrally closed. By the lemma, we have O ⊆ EndR(I)
for some R-lattice I ⊆ V , so if O is maximal then O = EndR(I). If R is a PID then
I = Ry1⊕ · · · ⊕Ryn, and the change of basis matrix from xi to yi realizes EndR(I)
as a conjugate of EndR(J) ' Mn(R).



92 CHAPTER 8. ORDERS

An order O ⊆ EndR(I) can be thought of as a subring of endomorphisms of
a lattice preserving some extra structure. We consider this matter in detail in the
quaternionic context of 2× 2-matrices in Chapter 18.

8.6 Quadratic forms

In setting up an integral theory, we will also have need of an extension of the theory
of quadratic forms over a PID; these notions generalize those over fields (Section 4.2)
in a straightforward way.

Let R be a PID.

Definition 8.6.1. A quadratic form over R is a map Q : M → R where M is a (free)
R-module satisfying:

(i) Q(rx) = r2Q(x) for all r ∈ R and x ∈ Rn; and

(ii) The map T : Rn ×Rn → R defined by

T (x, y) = Q(x+ y)−Q(x)−Q(y)

is R-bilinear.

T is called the associated bilinear map .

8.6.2. Let Q : V → F be a quadratic form with F the field of fractions of R. Let
M ⊆ V be a finitely generated R-lattice such that Q(M) ⊆ R. Then the restriction
Q|M : M → R is a quadratic form. Conversely, if Q : M → R is a quadratic form
over R, then the extension Q : M ⊗R F → F is a quadratic form over F .

Definition 8.6.3. A similarity between quadratic forms Q : M → R and Q′ : M ′ →
R is an isomorphism f : M ∼−→M ′ and u ∈ R× such that Q(f(x)) = uQ′(x) for all
x ∈M . An isometry between quadratic forms is a similarity with u = 1.

Let Q : M → R be a quadratic form over R. Then Q is nondegenerate if the
extension Q : M ⊗R F → F is nondegenerate. [[Nonsingular?]] From now on,
suppose that M ' Rn is free of finite rank n in the basis e1, . . . , en. We then define
the discriminant disc(Q) as the (half-)determinant of the Gram matrix (T (ei, ej))i,j ,
as in Definition 4.2.9. [[Nonsingular? and differences between them?]]

8.7 Extensions and further reading

8.7.1. The hypothesis thatR is noetherian is used in Paragraph 8.3.5; it seems possible
that the left order may not be finitely generated. Perhaps noetherian induction will
work? [[Used in other places?]].
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Exercises

Let R be a noetherian domain with field of fractions F .

8.1. Let L,M be R-lattices in a vector space V with dimF V < ∞. Show that
L+M and L ∩M are R-lattices.

8.2. Let B be an F -algebra and let I ⊂ B be an R-lattice. Show that there exists a
nonzero r ∈ R ∩ I .

8.3. Let c ⊆ R be a nonzero ideal. Show that(
R R
c R

)
=
{(

a b
c d

)
∈ M2(R) : c ∈ c

}
⊆ M2(R)

is an R-order in M2(F ).

8.4. Let O,O′ ⊆ B be R-orders. Show that O ∩O′ is an R-order.

8.5. Let A1, . . . , Ar be F -algebras and let B = A1 × · · · × Ar. Show that O ⊆ B
is an R-order if and only if O ∩Ai is an R-order for each i.

8.6. Let R be integrally closed. Show that Mn(R) is a maximal R-order in Mn(F ).

8.7. Let B =
(
K, b

F

)
with b ∈ R and let S be an R-order in K. Let O = S + Sj.

Show that O is an R-order in B.

8.8. Let B be an F -algebra with a standard involution and let α ∈ B. Show that if
α is integral over R then trd(αn) ∈ R for all n ∈ Z≥0. Is the converse true?

8.9. Generalize Example 8.3.13 as follows.

a) Find an algebra B over a field F and elements α, β ∈ B such that α, β
are integral over R ⊆ F but αβ is not.

b) Find a division ring D over a field F and elements α, β ∈ D such that
α, β are integral over R ⊆ F but α+ β is not.

8.10. Give an example of a non-noetherian ring R and modules J ⊂ I such that I
is finitely generated but J is not finitely generated. Does this yield an example
where OL(I) is not an R-lattice (cf. Paragraph 8.3.5)?

8.11. Let α ∈ Mn(F ) have characteristic polynomial with coefficients in R. Show
that α is conjugate by an element β ∈ GLn(F ) to an element of Mn(R). Ex-
plicitly, how do you find such a matrix β?

8.12. Let B be an F -algebra and let I ⊆ B be an R-lattice. Show that OL(I) is a
maximal R-order if and only if OR(I) is a maximal R-order. [[Not sure it is
true in this generality. Exercise I.4.1 in Vigneras.]]

8.13. Let O ⊆ B be an R-order.


