
Chapter 31

Fundamental domains

We have seen in sections 29.1 and 30.5 that understanding a nice fundamental set for
the action of a discrete group Γ is not only useful to visualize the action of the group
by selecting representatives of the orbits, but it is also instrumental for many other
purposes—including understanding the structure of the group itself. In this chapter,
we pursue a general construction of nice fundamental domains for the action of a
discrete group of isometries.

31.1 Dirichlet domains for Fuchsian groups

In this introductory section, we preview the results in this chapter specialized to the
case of Fuchsian groups. Let Γ ⊂ PSL2(R) be a Fuchsian group; then Γ is discrete,
acting properly by isometries on the hyperbolic plane H2, with metric ρ(·, ·) and hy-
perbolic area µ.

A natural way to produce fundamental sets that provide appealing tesselations of
H2 is to select in each orbit the points closest to a fixed point z0 ∈ H2, as follows.

Definition 31.1.1. The Dirichlet domain for Γ centered at z0 ∈ H2 is

◊(Γ; z0) = {z ∈ H2 : ρ(z, z0) ≤ ρ(γz, z0) for all γ ∈ Γ}.

As the group Γ will not vary, we suppress the dependence on Γ and often write
simply ◊(z0) = ◊(Γ; z0).

31.1.2. The set ◊(z0) is an intersection

◊(z0) =
⋂
γ∈Γ

H(γ; z0) (31.1.3)

where

H(γ; z0) = {z ∈ H2 : ρ(z, z0) ≤ ρ(γz, z0) = ρ(z, γ−1z0)}. (31.1.4)

In particular, since each H(γ; z0) is closed, we conclude from (31.4.12) that ◊(z0) is
closed.
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The sets H(γ; z0) can be further described as follows. If z0 = γ−1z0, then
H(γ; z0) = H2. So suppose z0 6= γ−1z0. Then by Exercise 27.8, H(γ; z0) is a
(half!) half-plane consisting of the set of points as close to z0 as γ−1z0, and H(γ; z0)
is convex (if two points lie in the half-plane then so does the geodesic between them).
The boundary

bdH(γ; z0) = L(γ; z0) = {z ∈ H2 : ρ(z, z0) = ρ(z, γ−1z0)}

is the perpendicular bisector of the geodesic segment from z0 to γ−1z0, and L(γ; z0)
is geodesic.

From the description in Paragraph 31.1.2, the sketch of a Dirichlet domain looks
like:

Dirichlet domains are ubiquitous, and already the fundamental sets we have seen
are in fact examples of Dirichlet domains.

Example 31.1.5. We claim that the Dirichlet domain for Γ = PSL2(Z) centered at
z0 = 2i is in fact the fundamental set for Γ introduced in section 29.1, i.e.,

◊(2i) = {z ∈ H2 : |Re z| ≤ 1/2, |z| ≥ 1}. (31.1.6)

Recall the generators S, T ∈ Γ with Sz = −1/z and Tz = z + 1. By (27.4.3) we
have

cosh ρ(z, 2i) = 1 + |z − 2i|2

4 Im z
.



31.1. DIRICHLET DOMAINS FOR FUCHSIAN GROUPS 371

Let z ∈ H2. Visibly, we have

ρ(z, 2i) ≤ ρ(Tz, 2i) ⇔ Re z ≥ −1/2 (31.1.7)

or put another way

H(T ; 2i) = {z ∈ H2 : Re z ≥ −1/2}.

Similarly, we haveH(T−1; 2i) = {z ∈ H2 : Re z ≤ 1/2}. Equivalently, the geodesic
perpendicular bisector between 2i and 2i± 1 are the lines Re z = ±1/2.

In the same manner, we find that

ρ(z, 2i) ≤ ρ(Sz, 2i) ⇔ |z − 2i|2

Im z
≤ |(−1/z)− 2i|2

Im(−1/z)

⇔ |z − 2i|2

Im z
≤ 4|z|2|z − i/2|2

|z|2 Im z

⇔ |z − 2i|2 ≤ 4|z − i/2|2

⇔ |z| ≥ 1

(31.1.8)

so H(S; 2i) = {z ∈ H2 : |z| ≥ 1}. To prove this another way, note that the geodesic
between 2i and S(2i) = (1/2)i is along the imaginary axis with midpoint at i, and so
the perpendicular bisector L(S; 2i) is the unit semicircle.

The containment (⊆) in (31.1.6) then follows directly from (31.1.7)–(31.1.8).
Conversely, we show the containment (⊇) for the interior—since ◊(2i) is closed,
this implies the full containment. Let z ∈ H2 have |Re z| < 1/2 and |z| > 1, and
suppose that z 6∈ ◊(2i); then there exists γ ∈ PSL2(Z) such that z′ = γz has
ρ(z′, 2i) < ρ(z, 2i), without loss of generality (replacing z′ by Sz′ or Tz′) we may
assume |Re z′| ≤ 1/2 and |z′| ≥ 1; but then by Lemma 29.1.3, we conclude that
z′ = z, a contradiction.

(Note that the same argument works with z0 = ti for any t ∈ R>1.)

With this example in hand, we see that Dirichlet domains have quite nice structure.
To make this more precise, we upgrade our notion of fundamental set (Definition
28.1.13) as follows.

Definition 31.1.9. A fundamental set ◊ for Γ is locally finite if for each compact set
K ⊂ H2, we have γK ∩◊ 6= ∅ for only finitely many γ ∈ Γ.

A fundamental domain for Γ � H2 is a fundamental set ◊ ⊆ H2 such that
µ(bd ◊) = 0.

The first main result of this section is as follows (Theorem 31.5.3). We must first
find a point z0 such that no nonidentity element of Γ fixes z0:

Theorem 31.1.10. Let z0 ∈ H2 satisfy StabΓ(z0) = {1}. Then ◊(z0) is a connected,
convex, locally finite fundamental domain for Γ with geodesic boundary.

Specifically, in any bounded set A, there are finitely many γi ∈ Γ− {1} such that

A ∩ bd ◊(z0) ⊆
⋃
i

L(z0, γ
−1
i z0).
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31.2 Ford domains

In this section, we reinterpret Dirichlet domains in the unit disc D2, as it is more
convenient to compute and visualize distances this model. Let z0 ∈ H2. We apply the
the map (27.6.3)

φ : H2 → D2

w = z − z0

z − z0

with z0 7→ φ(z0) = w0 = 0. Then by (27.6.6) we have that

ρ(w, 0) = log 1 + |w|
1− |w| = 2 tanh−1 |w| (31.2.1)

is an increasing function of |w|.

Example 31.2.2. The Dirichlet domain from Example 31.1.5 looks like the following
in D2 (with z0 = 2i):

Let Γ ≤ PSL2(R) be a Fuchsian group, and (recalling Paragraph 27.6.7) to ease
notation, we identify Γ with Γφ. We analogously define a Dirichlet domain ◊(w0) for
a Fuchsian group Γ centered at w0 ∈ D2 and we have

φ(◊(z0)) = ◊(w0) ⊂ D2

if φ(z0) = w0. In particular, the statement of Theorem 31.1.10 applies equally well
to ◊(w0) ⊆ D2.

For simplicity (and without loss of generality), we only consider the case where
w0 = 0, and then from (31.2.1) we have

◊(Γ; 0) = {w ∈ D2 : |w| ≤ |γw| for all γ ∈ Γ}. (31.2.3)
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31.2.4. We now pursue a tidy description of the set (31.2.3). Let

g =
(
d c
c d

)
∈ PSU(1, 1) � D2

with c, d ∈ C satisfying |d|2 − |c|2 = 1. From (31.2.1), we have ρ(w, 0) ≤ ρ(gw, 0)
if and only if

|w| ≤
∣∣∣∣dw + c

cw + d

∣∣∣∣ ; (31.2.5)

expanding out (31.2.5) and with a bit of patience (Exercise 31.5), we see that this is
equivalent to simply

|cw + d| ≥ 1.

But we can derive this more easily using the invariance of the metric: the hyperbolic
metric (Definition 27.6.1) on D2 is invariant d(gs) = ds, so

ds = |dw|
(1− |w|)2 = |d(gw)|

(1− |gw|)2 = d(gs)

so by the chain rule ∣∣∣∣ dg
dw

∣∣∣∣ =
(

1− |gw|
1− |w|

)2
.

Thus

|w| ≤ |gw| ⇔
∣∣∣∣ dg
dw

∣∣∣∣ ≤ 1; (31.2.6)

but then we compute

dg
dw = (cw + d)d− (dw + c)c

(cw + d)2 = 1
(cw + d)2 (31.2.7)

so |w| ≤ |gw| if and only if |cw + d| ≥ 1.

The equivalence (31.2.6) shows that ρ(w, 0) = ρ(gw, 0) if and only if
∣∣∣∣ dg
dw

∣∣∣∣ = 1

if and only if g acts as a Euclidean isometry at the point w (preserving the length
of tangent vectors in the Euclidean metric). So we are led to make the following
definition.

Definition 31.2.8. Let g =
(
d c
c d

)
∈ PSU(1, 1). The isometric circle of g is

I(g) =
{
w ∈ C :

∣∣∣∣ dg
dw

∣∣∣∣ = 1
}

= {w ∈ C : |cw + d| = 1}.

31.2.9. If c 6= 0, then I(g) is a circle with radius 1/|c| and center −d/c ∈ C, and if
c = 0 then gw = (d/d)w with |d/d| = 1 is rotation about the origin. The condition
c 6= 0 is equivalent to g(0) 6= 0, i.e., g 6∈ StabPSU(1,1)(0).
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We define interior and exterior of I(g) by

int I(g) = {w ∈ C : |cw + d| < 1}
ext I(g) = {w ∈ C : |cw + d| > 1}.

It follows that for any g ∈ PSU(1, 1), we have

ρ(w, 0)


<

=
>

 ρ(gw, 0) according as


w ∈ ext(I(g)),
w ∈ I(g),
w ∈ int(I(g)).

In particular, we have

◊(Γ; 0) =
⋂

γ∈Γ−StabΓ(0)

cl ext I(γ).

This description of a Dirichlet domain as the intersection of the exteriors of iso-
metric circles is due to Ford, and so we call a Dirichlet domain in D2 centered at 0
a Ford domain. In section 31.7, we show how this description can be turned into an
algorithm for computing the Dirichlet domain ◊ for a nice class of Fuchsian groups.

Remark 31.2.10. In the identification H2 → D2, the preimage of isometric circles
corresponds to the corresponding perpendicular bisector; this is the simplification pro-
vided by working in D2 (the map φ is a hyperbolic isometry, whereas isometric circles
are defined by a Euclidean condition).

31.3 Side pairings and Poincaré’s polygon theorem

Continuing with our third and final section focused on Fuchsian groups, we consider
applications to the structure of a Fuchsian group Γ, as well as a partial converse.

Let ◊ = ◊(Γ; z0) be a Dirichlet domain centered at z0 ∈ H2. A consequence of
the local finiteness of a Dirichlet domain is the following theorem (Theorem 31.4.2).
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Theorem 31.3.1. Γ is generated by the set

{γ ∈ Γ : ◊ ∩ γ◊ 6= ∅}.

So by Theorem 31.3.1, to find generators, we must look for “overlaps” in the
tesselation provided by ◊. If z ∈ ◊ ∩ γ◊ with γ ∈ Γ− {1}, then z, γz ∈ ◊, so

ρ(z, z0) ≤ ρ(γz, z0) ≤ ρ(z, z0) (31.3.2)

so equality holds and (viz. Paragraph 31.1.2) we have z ∈ bd ◊. Since the boundary
of ◊ is geodesic, to understand generators we should organize the matching provided
along the geodesic boundary of ◊.

For convenience, from now on, we work in the unit disc D2.

31.3.3. A maximal geodesic subset of ◊ (of nonzero length) is called a side. Equiva-
lently, a side is a nonempty set of the form ◊∩ γ◊ with γ ∈ Γ−{1} by (31.3.2), and
such a representation is unique.

If two sides intersect in D2, the point of intersection is called a vertex of ◊; equiv-
alently, a vertex is a single point of the form ◊ ∩ γ◊ ∩ γ′◊ with γ, γ′ ∈ Γ. An ideal
vertex is a point of the closure of ◊ in D2∗ that is the intersection of the closure of
two sides in D2∗.

Because ◊ is locally finite, there are only finitely many vertices in any compact
neighborhood (Exercise 31.7).

31.3.4. We make the following important convention on sides and vertices to simplify
the arguments below (at the cost of making their description slightly more compli-
cated): if

L = ◊ ∩ γ◊

is a side of ◊ and γ2 = 1, or equivalently if γL = L, then γ fixes the midpoint of
L, and we consider L to be the union of two sides that meet at the vertex equal to the
midpoint.
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31.3.5. We now provide a standard picture of ◊ in a neighborhood of a point w ∈
bd ◊. Because ◊ is locally finite, there is an an open neighborhood of w and finitely
many γ1, . . . , γn ∈ Γ with γ1 = 1 such that U ⊆

⋃
i γi◊ and w ∈ γi◊ for all i.

Shrinking U if necessary, we may assume that U contains no vertices of ◊ except
possibly for w and intersects no sides of γi◊ except those that contain w. Therefore,
we have the following situation:

(31.3.6)

(As a special case, we may have n = 2, and then either w is a fixed point of γ2 or not.)

31.3.7. Let S denote the set of sides of ◊. We define a labeled equivalence relation
on S by

P = {(γ, L, L∗) : L∗ = γ(L)} ⊂ Γ× (S × S). (31.3.8)

We say that P is a side pairing for P if P induces a partition of S into pairs, and we de-
note by G(P ) the projection of P to Γ. Since (γ, L, L∗) ∈ P implies (γ−1, L∗, L) ∈
P , we have that G(P ) is closed under inverses.

31.3.9. We will also need to consider an induced relation on the set of vertices. Let
v = v1 be a vertex of ◊. Then by the standard picture, there exist 1 = γ1, γ2, . . . , γn ∈
Γ such that if vi = γiv1 then Γv ∩ ◊ = {v1, . . . , vn}. We call v1, . . . , vn a vertex
cycle, and to such a cycle we write gi = γ−1

i γi+1 (indices taken modulo n) and
associate the cycle relation

g1g2 · · · gn = (γ−1
1 γ2)(γ−1

2 γ3) · · · (γnγ1) = 1. (31.3.10)

Let R(P ) be the finite set of cycle relations arising from Γ-orbits of vertices in ◊.

Proposition 31.3.11. A Dirichlet domain ◊ has a side pairing P , and the set G(P )
generates Γ with R(P ) a set of defining relations.

Proposition 31.3.11 is to be interpreted this way: the free group on G(P ) mod-
ulo the normal subgroup generated by the relations R(P ) is isomorphic to Γ via the
natural evaluation map.

Proof. If L is a side, then L = ◊ ∩ γ◊ for a unique γ, and thus

γ−1L = ◊ ∩ γ−1◊ = L∗ 6= L

by the convention in Paragraph 31.3.4; by uniqueness, the equivalence class of L
contains only L,L∗, so P (31.3.8) is a side pairing.

Let Γ∗ ≤ Γ be the subgroup generated by G(P ). By Theorem 31.3.1, we need
to show that if ◊ ∩ γ◊ 6= ∅ then γ ∈ Γ∗. So let w ∈ ◊ ∩ γ◊ with γ ∈ Γ − {1}.
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We refer to the standard picture (Paragraph 31.3.5); we have γ = γj for some j.
For all i = 1, . . . , n, we have ◊ ∩ γ−1

i γi+1◊ is a side, so γ−1
i γi+1 ∈ G(P ) is a

side pairing element. Since γ1 = 1, by induction we find that γi ∈ Γ∗ for all i, so
γ = γj ∈ Γ∗ as claimed. It follows that, in fact, each cycle relation 31.3.10, we have
gi = γ−1

i γi+1 ∈ G(P ) so the relation is already a word in G(P ).
We now turn to relations. Let h1h2 . . . hk = 1 be a relation with each hi ∈ G(P ),

and let zi = hizi−1 for i = 1, . . . , k. Exactly because g1 ∈ G(P ), we have that ◊
and g1◊ share a side, and since ◊ is connected, we can draw a path z0 → z1 through
the corresponding side. Continuing in this way, we end up with a path z0 → zk = z0,
hence a closed loop.

Let V be the intersection of the Γ orbit of the vertices of ◊ with the interior of the
loop; this is a finite set, and we proceed by induction on its cardinality. The proof
boils down to the fact that this loop retracts onto the loops around vertices obtained
from cycle relations.

If the path from z0 → z1 crosses the same side as the path zk−1 → zk = z0, then
z1 = zk−1 and so

g1z0 = z1 = zk−1 = g−1
k−1zk = g−1

k z0

so g−1
k = g1, since StabΓ(z0) = {1}. Conjugating the relation by gk = g1 and

repeating if necessary, we may assume that g−1
k 6= g1, so zk−1 6= z1; and the set V is

conjugated, so it remains the same size. In particular, if V is empty, then this shows
that the original relation is conjugate to the trivial relation.

Otherwise, the path z0 → z1 crosses a side and there is a unique vertex on this side
that is interior to the loop (working counterclockwise). The cycle relation h1 · · ·hk
around v provides a loop around v starting with g1 = h1 = h−1

k · · ·h
−1
2 ; substituting

this into the original relation, we obtain a new relation with one fewer vertex; the
result then follows by induction.
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In section 31.5, we consider a partial converse to Proposition 31.3.11, due to
Poincaré: given a convex hyperbolic polygon with a side pairing that satisfies certain
conditions, there exists a Fuchsian group Γ with the given polygon as a fundamental
domain.

31.4 Dirichlet domains

In this section we consider the construction of Dirichlet fundamental domains in a
general context. Let (X, ρ) be a complete, locally compact geodesic space. In par-
ticular, X is connected, and by the theorem of Hopf–Rinow, closed balls (of finite
radius) in X are compact.

Let Γ be a discrete group of isometries acting properly on X . Right from the get
go, we prove our first important result: we exhibit generators for a group based on a
fundamental set with a basic finiteness property.

Definition 31.4.1. Let A ⊆ X . We say A is locally finite for Γ if for each compact
set K ⊂ X , we have γK ∩A 6= ∅ for only finitely many γ ∈ Γ.

The value of a locally finite fundamental set is explained by the following theorem.

Theorem 31.4.2. Let ◊ be a locally finite fundamental set for Γ. Then Γ is generated
by the set

{γ ∈ Γ : ◊ ∩ γ◊ 6= ∅}. (31.4.3)

Proof. Let Γ∗ ≤ Γ be the subgroup of Γ generated by the elements (31.4.3). We want
to show Γ∗ = Γ.

For any x ∈ X , by Theorem 31.4.16, there exists γ ∈ Γ such that γx ∈ ◊. If
there is another γ′ ∈ Γ with γ′x ∈ ◊, then

γ′x ∈ ◊ ∩ γ′γ−1◊
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so γ′γ−1 ∈ Γ∗ and in particular Γ∗γ = Γ∗γ′. In this way, we define a map

f : X → Γ∗\Γ
x 7→ Γ∗γ

for any γ ∈ Γ such that γx ∈ ◊.
We now show that f is locally constant. Let x ∈ X . Since ◊ is locally finite, for

any compact neighborhood K 3 x we can write K ⊆
⋃
i γi◊ with a finite union, and

by shrinking K we may assume that x ∈ γi◊ for all i. In particular, f(x) = Γ∗γ−1
i

for any i. But then if y ∈ K, then y ∈ γi◊ for some i, so f(y) = Γ∗γ−1
i = f(x).

Thus f is locally constant.
But X is connected so any locally constant function is in fact constant, so f takes

only the value Γ∗. So now let γ ∈ Γ and let x ∈ ◊. Then

Γ∗ = f(x) = f(γ−1x) = Γ∗γ

so γ ∈ Γ∗, and the proof is complete.

We now seek a locally finite fundamental set with other nice properties: we will
choose in each Γ-orbit the closest points to a fixed point x0 ∈ X . So we first must
understand the basic local properties of intersections of these half-spaces (as in Para-
graph 31.1.2).

31.4.4. For x1, x2 ∈ X , define the closed Leibniz half-space

H(x1, x2) = {x ∈ X : ρ(x, x1) ≤ ρ(x, x2)}. (31.4.5)

If x1 = x2, then H(x1, x2) = X . If x1 6= x2, then H(x1, x2) consists of the set of
points as close to x1 as x2, so

intH(x1, x2) = {x ∈ X : ρ(x, x1) < ρ(x, x2)}. (31.4.6)

and
bdH(x1, x2) = L(x1, x2) = {x ∈ X : ρ(x, x1) = ρ(x, x2)}

is called the hyperplane bisector (or equidistant hyperplane or separator ) between
x1 and x2.

Remark 31.4.7. In this generality, unfortunately hyperplane bisectors are not neces-
sarily geodesic (Exercise 31.9).

Definition 31.4.8. A set A ⊆ X is star-shaped with respect to x0 ∈ A if for all
x ∈ A, the geodesic between x and x0 belongs to A.

A set A ⊆ X that is star-shaped is path connected, so connected.

Lemma 31.4.9. A Leibniz half-plane H(x1, x2) is star-shaped with respect to x1.



380 CHAPTER 31. FUNDAMENTAL DOMAINS

Proof. Let x ∈ H(x1, x2) and let y be a point along the unique geodesic from x to
x1. Then

ρ(x1, y) + ρ(y, x) = ρ(x1, x).

If y 6∈ H(x1, x2), then ρ(x2, y) < ρ(x1, y), and so

ρ(x2, x) ≤ ρ(x2, y) + ρ(y, x) < ρ(x1, y) + ρ(y, x) = ρ(x1, x)

contradicting that x ∈ H(x1, x2). So y ∈ H(x1, x2) as desired.

Now let x0 ∈ X .

Definition 31.4.10. The Dirichlet domain for Γ centered at x0 ∈ X is

◊(Γ;x0) = {z ∈ H2 : ρ(x, x0) ≤ ρ(γx, x0) for all γ ∈ Γ}.

We often abbreviate ◊(x0) = ◊(Γ;x0).

31.4.11. Since ρ(γx, x0) = ρ(x, γ−1x0), we have

◊(x0) =
⋂
γ∈Γ

H(x0, γ
−1x0); (31.4.12)

each half-space is closed and star-shaped with respect to x0, so the same is true of
◊(x0). In particular, ◊(x0) is connected.

A Dirichlet domain satisfies a basic finiteness property, as follows.

Lemma 31.4.13. If A ⊂ X is any bounded set, then A ⊆ H(γ;x0) for all but finitely
many γ ∈ Γ.

In particular, for any x ∈ X we have x ∈ H(γ;x0) for all but finitely many γ ∈ Γ.

Proof. Since A is bounded, we have

sup({ρ(x, x0) : x ∈ A}) = r <∞.

By Theorem 28.3.12, the orbit Γx0 is discrete and # StabΓ(x0) < ∞; since closed
balls are compact by assumption, there are only finitely many γ ∈ Γ such that

ρ(γx0, x0) = ρ(x0, γ
−1x0) ≤ 2r

and for all remaining γ ∈ Γ and all x ∈ A, we have

ρ(x, γ−1x0) ≥ ρ(x0, γ
−1x0)− ρ(x, x0) > 2r − r = r ≥ ρ(x, x0)
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so x ∈ H(γ;x0).

31.4.14. Arguing in a similar way as in Lemma 31.4.13, one can show (Exercise
31.8): if K is any compact set, then K ∩ L(γ;x0) 6= ∅ for only finitely many γ ∈ Γ.

Lemma 31.4.15. We have

int ◊(x0) = {x ∈ ◊ : ρ(x, x0) < ρ(γx, x0) for all γ ∈ Γ− StabΓ(x0)}

and

bd ◊(x0) = {x ∈ ◊ : ρ(x, x0) = ρ(γx, x0) for some γ ∈ Γ− StabΓ(x0)}.

Proof. Let x ∈ ◊, and let U 3 x be a bounded open neighborhood of x. By Lemma
31.4.13, we have U ⊆ H(γ;x0) for all but finitely many γ ∈ Γ, so

U ∩◊ = U ∩
⋂
i

H(x0, γ
−1
i x0)

the intersection over finitely many γi ∈ Γ with γi 6∈ StabΓ(x0).

Thus
U ∩ int(◊) = U ∩

⋂
i

intH(x0, γ
−1
i x0).

The lemma then follows from (31.4.6).
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The first main result of this chapter is the following theorem.

Theorem 31.4.16. Let x0 ∈ X , and suppose StabΓ(x0) = {1}. Then ◊(Γ;x0) is a
locally finite fundamental set for Γ that is star-shaped with respect to x0 and whose
boundary consists of hyperplane bisectors.

Specifically, in any bounded set A, by Lemma 31.4.13 we have

A ∩ bd ◊(Γ;x0) ⊆
⋃
i

L(x0, γix0)

for finitely many γi ∈ Γ− {1}.

Proof. Abbreviate ◊ = ◊(x0). We saw that ◊ is (closed and) star-shaped with respect
to x0 in Paragraph 31.4.11.

Now we show that X =
⋃
γ γ◊. Let x ∈ X . The orbit Γx is discrete, so the

distance
ρ(Γx, x0) = inf({ρ(γx, x0) : γ ∈ Γ}) (31.4.17)

is minimized at some point γx ∈ ◊ with γ ∈ Γ. Thus ◊(x0) contains at least one
point from every Γ-orbit, and consequently .

We now refer to Lemma 31.4.15. Since X is complete, this lemma implies that
cl(int(◊)) = ◊. And int(◊) ∩ int(γ◊) = ∅ for all γ ∈ Γ− {1}, because if x, γx ∈
int(◊) with γ 6= 1 then

ρ(x, x0) < ρ(γx, x0) < ρ(γ−1(γx), x0) = ρ(x, x0), (31.4.18)

a contradiction.
Finally, we show that X is locally finite. It suffices to check this for a closed disc

K ⊆ X with center x0 and radius r ∈ R≥0. Suppose that γK meets ◊ with γ ∈ Γ;
then by definition there is x ∈ ◊ such that ρ(x0, γ

−1x) ≤ r. Then

ρ(x0, γ
−1x0) ≤ ρ(x0, γ

−1x) + ρ(γ−1x, γ−1x0) ≤ r + ρ(x, x0).

Since x ∈ ◊, we have ρ(x, x0) ≤ ρ(γ−1x, x0) ≤ r, so

ρ(x0, γ
−1x0) ≤ r + r = 2r.



31.5. HYPERBOLIC DIRICHLET DOMAINS 383

For the same reason as in Lemma 31.4.13, this can only happen for finitely many
γ ∈ Γ.

31.5 Hyperbolic Dirichlet domains

We now specialize to the case X = H where H = H2 or H = H3 with volume µ;
then Γ is a Fuchsian or Kleinian group, respectively.

Definition 31.5.1. A fundamental domain for Γ � X is a connected fundamental set
◊ ⊆ X such that µ(bd ◊) = 0.

We now turn to Dirichlet domains in this context.

31.5.2. On the one hand, the hypothesis that StabΓ(z0) = {1} is a very mild hy-
pothesis, as follows. If H = H2, then in any compact set K, there are only finitely
many points z ∈ K such that StabΓ(z) 6= {1}: indeed, there are only finitely many
γ ∈ Γ such that γK ∩K 6= ∅, and any such γ 6= 1 has at most one fixed point in H2

(Lemma 27.3.5). Similarly, ifH = H3, in any compact set K, the set of points z with
StabΓ(z) 6= {1} is a finite set of points and geodesic axes.

That being said, we can then prove a slightly stronger and more useful version
of Theorem 31.4.16, as follows. If Γ0 = StabΓ(z0) is nontrivial, we modify the
Dirichlet domain by intersecting with a fundamental set for Γ0; the simplest way to
do this is just to choose another point which is not fixed by any element of Γ0 and
intersect.

Theorem 31.5.3. Let z0 ∈ H, let Γ0 = StabΓ(z0), and let u0 ∈ H be such that
StabΓ0(u0) = {1}. Then

◊(Γ; z0) ∩◊(Γ0;u0)

is a connected, convex, locally finite fundamental domain for Γ with geodesic bound-
ary inH.

Proof. Abbreviate
◊ = ◊(Γ; z0) ∩◊(Γ0;u0).

First, we show that z0 ∈ ◊: indeed, z0 ∈ ◊(Γ; z0), and by Theorem 31.4.16,
◊(Γ0;u0) is a fundamental set for Γ0 so there exists γ0 ∈ Γ0 such that γ0u0 = u0 ∈
◊(Γ0;u0).

Now we show that ◊ is a fundamental set for Γ. First we show H =
⋃
γ γ◊. Let

z ∈ H, and let γ ∈ Γ be such that ρ(γz, z0) is minimal as in (31.4.17). Let γ0 ∈ Γ0
such that γ0(γz) ∈ ◊(Γ0;u0). Then

ρ(γ0(γz), z0) = ρ(γz, z0)

so γ0γz ∈ ◊. And int(◊)∩int(γ◊) = ∅ for all γ ∈ Γ−{1}, because if z, γz ∈ int(◊)
with γ 6= 1, then either γ 6∈ Γ0 in which case we obtain a contradiction as in (31.4.18),
or γ ∈ Γ0 − {1} and then we have a contradiction from the fact that ◊(Γ0;u0) is a
fundamental set.
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We conclude by proving the remaining topological properties of ◊. We know that
◊ is locally finite, since it is the intersection of two locally finite sets. We saw in
Paragraph 31.1.2 that the Leibniz half-spaces in H2 are convex with geodesic bound-
ary, and the same is true in H3 by Exercise 30.8. It follows that ◊ is convex, as the
intersection of convex sets. Thus

bd ◊ ⊆
⋃

γ∈Γ−{1}

L(z0, γ
−1z0)

is geodesic and measure zero, since L(z0, γ
−1z0) intersects a compact set for only

finitely many γ by Paragraph 31.4.14.

We now turn to a partial converse for Theorem 31.5.3 for H2; we need one addi-
tional condition. Let ◊ be a convex (finite-sided) hyperbolic polygon equipped with a
side pairing P .

31.5.4. For a vertex v of ◊, let ϑ(◊, v) be the interior angle of ◊ at v. We say that ◊
satisfies the cycle condition if for vertex v of ◊, there exists e ∈ Z>0 such that∑

γ∈Γ
γv∈◊

ϑ(◊, γv) = 2π
e
.

Put another way, ◊ satisfies the cycle condition if the sum of the interior angles for a
Γ-orbit of vertices as in the standard picture is an integer submultiple of 2π.

Lemma 31.5.5. Let ◊ be a Dirichlet domain. Then ◊ satisfies the cycle condition.

Proof. Let v be a vertex of ◊ and let Γv = {v1, . . . , vn} with δivi = v1 = v. Then
γi◊ has v as a vertex, and

ϑ(δi◊, v) = ϑ(◊, vi) = ϑ(◊, δiv).

Referring to (31.3.6), we see that

{γi}i =
⋃
i

StabΓ(v)δi.

Letting e = # StabΓ(v), since StabΓ(v) acts (locally) by rotation around v, we con-
clude that

2π = e

n∑
i=1

ϑ(◊, vi)

and so the cycle condition is satisfied.

Theorem 31.5.6 (Poincaré). Let ◊ be a convex (finite-sided) hyperbolic polygon
equipped with a side-pairing P . Suppose that ◊ satisfies the cycle condition.

Then the group Γ = 〈G(P )〉 ≤ PSL2(R) generated by side pairing elements is a
Fuchsian group, and ◊ is a fundamental domain for Γ.

Unfortunately, it is beyond the scope of this book to give a complete proof of
Theorem 31.5.6, but see Paragraph 31.8.2 for further references, including general-
izations.
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31.6 Coset tables

[[Discuss the Reidemeister–Schreier algorithm?]]

31.7 Algorithmic aspects

We now show how one can explicitly compute the Dirichlet or Ford domain ◊ for
finitely generated Fuchsian and Kleinian groups.

31.8 Extensions and further reading

A Fuchsian group with cofinite area if finitely generated by a result of Siegel [Kat92,
Theorem 4.1.1], [GG90, §1].

Dirichlet domains are sometimes also called Voronoi domains, because of the link
to Voronoi theory.

31.8.1. A discussion of side pairings can be found in Beardon [Bea95, Theorem 9.3.3]
and Katok [Kat92, Theorem 3.5.4].

31.8.2. Poincaré’s theorem (Proposition 31.3.11) states that a finite-sided hyperbolic
polygon ◊ ⊆ D2 equipped with a side pairing P that satisfies the cycle condition is
a fundamental domain for the group generated by G(P ). This is proven by Beardon
[Bea95, Theorem 9.8.4] and the accompanying exercises: the condition that µ(◊) <
∞ ensures that any vertex which lies on the circle at infinity is fixed by a hyperbolic
element [GG90, §1]. One must verify Beardon’s condition (A6) [Bea95, p. 246] or
(A6)′ [Bea95, p. 249], which formalizes the equivalent angle condition (g) given by
Maskit [Mas71, p. 223]. This statement extends to a larger class of polygons (see
Beardon [Bea95, §9.8]).

A domain in topology is sometimes taken to be an open connected set; one also
sees closed domains, and our fundamental domains are taken to be of this kind.

31.8.3. The characterization of the domain ◊(Γ; 0) ⊆ D2 in Paragraph 31.2.9 is
originally attributed to Ford [For1972, Theorem 7, §20].

Exercises

31.1. Describe the Dirichlet domain ◊(z) for an arbitrary z ∈ H2 with Im z > 1.

31.2. Let Γ = PSL2(Z[i]) (cf. section 30.5). Show that

◊(Γ; 2j) = {z = x+ yj ∈ H3 : |Rex|, |Im x| ≤ 1/2 and ‖z‖ ≥ 1}

and that

StabΓ(2j) =
〈(

i 0
0 −i

)〉
' Z/2Z

so ◊(Γ; 2j) is a union of two copies of a fundamental set for Γ.



386 CHAPTER 31. FUNDAMENTAL DOMAINS

31.3. Let Γ be the cyclic Fuchsian group generated by the isometry z 7→ 4z, repre-

sented by
(

2 0
0 1/2

)
∈ PSL2(R). Give an explicit description of the Dirichlet

domain ◊(Γ; i) ⊂ H2 and its image ◊(Γ; 0) ⊂ D2 with i 7→ 0.

31.4. For g =
(
a b
c d

)
∈ PSL2(R) with gi 6= i, show that ‖g‖2 > 2 and that the per-

pendicular bisector between i and gi is the half-circle of radius
‖g‖2 − 2

(a2 + c2 − 1)2

centered at
ab+ cd

a2 + c2 − 1 ∈ R, where ‖g‖2 = a2 + b2 + c2 + d2.

31.5. Let

g =
(
d c
c d

)
∈ PSU(1, 1) � D2

with c, d ∈ C satisfying |d|2 − |c|2 = 1. Show directly that |gw| = |w| for
w ∈ D2 if and only if

|cw + d| = 1

by expanding out and simplifying.

31.6. Show that for any g ∈ PSU(1, 1), we have gI(g) = I(g−1), where I(g) is the
isometric circle of g. (Equivalently, show that if g ∈ PSL2(R) that gL(g; z0) =
L(g−1; z0) for any z0 ∈ H2.)

31.7. Let ◊ be a Dirichlet domain for a Fuchsian group Γ. Show that in any compact
set, there are only finitely many vertices of ◊.

31.8. Let Γ be a discrete group of isometries acting properly on a locally compact,
complete metric space X , and let x0 ∈ X . Recall the definition of H(γ;x0)
(31.4.5) for γ ∈ Γ and L(γ; z0) = bdH(γ; z0). Show that if K is any compact
set, then K ∩ L(γ;x0) 6= ∅ for only finitely many γ ∈ Γ.

31.9. Consider the egg of revolution, a surface of revolution obtained from convex
curves with positive curvature as in the following picture:
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An egg of revolution has the structure of a geodesic space with the induced
metric from R3. Show that the separator between the top and bottom, a circle of
revolution, is not geodesic. [In fact, Clairaut’s relation shows that the geodesic
joining two points in the same circle of revolution above crest in the x-axis
never lies in this circle of revolution.]

31.10. In this exercise, we consider a Fuchsian group constructed from a regular quadri-
lateral.

a) Show that for every e ≥ 2, there exists a regular quadrilateral ◊ ⊂ D2,
unique up to isometry, with interior angle π/(2e).

Conclude from Poincaré’s theorem that there is a Fuchsian group, unique
up to conjugation in PSL2(R), with fundamental domain ◊ and side pair-
ing as follows.
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b) Find explicit generators and relations for this group when e = 2.


