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17.1 Data Assimilation

k: index for time t = kAt for a time interval At.

P> a system of interest with uncertainty

ug = f(uk—1) + 0aék—1
§k ~ N(Oa Uc2!)
» observations available uniformly in time
VK = g(uk) + €k

ex ~ N(0,02) observation error

Notation. uq.x = {ul, us, ..., uk}, Vik = {Vl, Vo, ..., Vk}.
Goal of data assimilation. At t = kAt, we want to estimate uy
using viq.k.

p(vic|uk)p(uk|vi:k—1)
p(Vi|vik—1)

p(uk|vik) =
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p(vi|uk)p(uk|viik—1)
p(Vi|vi:k—1)

p(uk|vi.k) =

Derivation.
p(vi:k|uk)p(uk)
p(vi:k)
— P(vis vizk—1]uk) p(uk)
B p(Vl:k)
P(Vic|vi:k—1, u) p(vi:k—1|uk) p(uk)
p(Vl:k)
P(vi|vi:k—1, uk)P(uk|vi:k—1)P(vik—1)P(uk)
p(vi:k)p(uk)
P(Vic|vi:k—1, u) P(Uk|vi:k—1) P(Vi:k—1)
p(Vi|vi:k—1)p(Vi:k—1)
P(vivi:k—1, ui)P(uk|vi—1) _ p(vi|ui)p(ui|vi:k—1)

puk|vi:k) =

p(vi|vi:k—1) p(Vi|vi:k—1)
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» p(uk|vi.k—1): prior density of uy. This is calculated from the
previous step posterior density p(ukx—_1|vi.k—1) using one of the
methods to propagate uncertainty (MC, gPC, perturbation,
etc).

» p(vi|uk): likelihood of vi. Under the Gaussian assumption of
the observation error, we have

p(vi|uk) =

2
o

» p(vk|vi:k—1): normalization constant.



17.2 Kalman Filter

Example. Scalar linear system u € R.
ug = auk—1 + &k—1, k1~ N(0,03)

Vk = U + €, €~ N(O,Ug)

» Assume that uy_1|vi.k—1 is Gaussian with mean my_; and
variance C,ffl, which are the mean and variance of the
previous step posterior density p(ux—_1|v1:k—1)-

» Then p(uk|vi:k—1) is also Gaussian with mean my and
variance 6,3

my = amy_1

G=aC 1+05



17.2 Kalman Filter
Example. Scalar linear system u € R.
uk = auk-1 + k-1, Ek—1~ N(0,03)
Vie = Ui + €4, €~ N(O,Jg)
» The posterior p(uk|vi.k) is also Gaussian with mean my and

variance C?
rﬁkag + vk C,%

my = =
C? + o2
2 — Cros
C? + o2
Idea of Proof. Match
(o= (ke —u)® o (u = mi)?

2C? 202 2C7



17.2 Kalman Filter

Example. Scalar linear system u € R.

U = auk_1 + &1, Ek—1~ N(0,03)

Vi = Uk + ek, ex ~ N(0,02)

» For consistency with another formula we will discuss later, the
mean and variance the following representation

| mic = i+ K(vie — i) |

G=01-KE

éz . .
here K = % is called "Kalman gain”.
where Erol s called "Kalman ga



17.2 Kalman Filter
Kalman filter for a d-dimensional linear system. For u € R
ug = Aug—1 + &1, £~ N(0,X)

v = Huy + €k, € N(O, F)

where 2 and ' are symmetric positive definite matrices.

» The prior mean i and covariance C are given by
my = Amy_1
C2=AC2 AT +%

where my_1 and C,_1 are the mean and covariance of the
previous step posterior distribution p(ux_1|v1:k—-1)-



17.2 Kalman Filter
Kalman filter for a d-dimensional linear system. For u € R
ug = Aug—1 + &1, £~ N(0,X)

Vi = Hup + €, €~ N(O, F)

where 2 and ' are symmetric positive definite matrices.

» The posterior mean my and covariance C,f are given by

mg = my + Kk(vk — Hl’ﬁk)
Ce = (1 KeH)CE (1)

K = C2HT (HC‘EHT + r)fl

where K is the Kalman gain matrix.



17.2 Kalman Filter

cosf —sinf

Example. A= (sin9 cosf

M= o2bh.

) with # = 0.3. ¥ = o2b,.

True and noisy observation values.

y of true values Trajectory of observation
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17.2 Kalman Filter

cosf —sinf

Example. A= (sin9 cosf

M= o2bh.

) with # = 0.3. ¥ = o2b,.

Kalman filtering result.

Time series of u, Time series of u,
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17.3 Continuous Time Model

Example. One of your homework problem (with different
notations)
du — yudt + odw (2)

> It is straightforward to derive an equation for the mean

dE
L] = —vE[u] = E[u] = uge™*
dt
» But not straightforward for the variance. Let u = E[u] + i.
Then .

b + odw
ae -~ 4Te

1dVar(u) _ 1 dE[i] _ E[u@

2 dt 2 dt dt

=E [—fyu2dt + Uudw] 7



17.3 Continuous Time Model

Example. One of your homework problem (with different
notations)
du — yudt + odw (2)

Another approach using integrating factors and white noise.

» The solution to (2) is given by
t
u(t) = upe 7 + a/ e (=) d(s).
0

> Note that E[u] = upe "t and i = o [; e 7= dw(s).

> Var(u(t)) = E[i(t)?]

=E I:O’ e / / W)y (¢)v(s')dt ds'

where v(t') is the white noise of w(t').



17.3 Continuous Time Model

Example. One of your homework problem (with different
notations)
du — yudt + odw (2)

Another approach using integrating factors and white noise.

t t
= 02627t/ / '+ E [v(t")v(s")] dt'ds’
0 Jo

t t
= 02e27t/ / H)5(¢ — §')dt'ds’
0 Jo

t
_ ’
= o2e 2”/ 21t dt!
0

2
_ 9 ot
- 2’7 (1 € )



17.3 Continuous Time Model

Example. One of your homework problem (with different
notations)
du — yudt + odw (2)

Therefore, we have

m(t) = E[u(t)] = upe "

2 o? 2yt
C(t)y=—(1—e
(0= (1)
Exercise. We assumed that ug is a fixed value (not random).
What are the mean and variance of u(t) for ug ~ N(mg, o3) where
mg and 08 are fixed constants?



