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17.1 Data Assimilation

k : index for time t = k∆t for a time interval ∆t.

I a system of interest with uncertainty

uk = f (uk−1) + σdξk−1

ξk ∼ N(0, σ2d)

I observations available uniformly in time

vk = g(uk) + εk

εk ∼ N(0, σ20) observation error

Notation. u1:k = {u1, u2, ..., uk}, v1:k = {v1, v2, ..., vk}.
Goal of data assimilation. At t = k∆t, we want to estimate uk
using v1:k .

p(uk |v1:k) =
p(vk |uk)p(uk |v1:k−1)

p(vk |v1:k−1)
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p(uk |v1:k) =
p(vk |uk)p(uk |v1:k−1)

p(vk |v1:k−1)

Derivation.

p(uk |v1:k) =
p(v1:k |uk)p(uk)

p(v1:k)

=
p(vk , v1:k−1|uk)p(uk)

p(v1:k)

=
p(vk |v1:k−1, uk)p(v1:k−1|uk)p(uk)

p(v1:k)

=
p(vk |v1:k−1, uk)p(uk |v1:k−1)p(v1:k−1)p(uk)

p(v1:k)p(uk)

=
p(vk |v1:k−1, uk)p(uk |v1:k−1)p(v1:k−1)

p(vk |v1:k−1)p(v1:k−1)

=
p(vk |v1:k−1, uk)p(uk |v1:k−1)

p(vk |v1:k−1)
=

p(vk |uk)p(uk |v1:k−1)

p(vk |v1:k−1)



17.1 Data Assimilation

I p(uk |v1:k−1): prior density of uk . This is calculated from the
previous step posterior density p(uk−1|v1:k−1) using one of the
methods to propagate uncertainty (MC, gPC, perturbation,
etc).

I p(vk |uk): likelihood of vk . Under the Gaussian assumption of
the observation error, we have

p(vk |uk) =
1√

2πσ2o
exp

(
−(vk − g(uk))2

2σ2o

)
I p(vk |v1:k−1): normalization constant.



17.2 Kalman Filter

Example. Scalar linear system u ∈ R.

uk = auk−1 + ξk−1, ξk−1 ∼ N(0, σ2d)

vk = uk + εk , εk ∼ N(0, σ2o)

I Assume that uk−1|v1:k−1 is Gaussian with mean mk−1 and
variance C 2

k−1, which are the mean and variance of the
previous step posterior density p(uk−1|v1:k−1).

I Then p(uk |v1:k−1) is also Gaussian with mean m̃k and
variance C̃ 2

k

m̃k = amk−1

C̃ 2
k = a2C 2

k−1 + σ2d



17.2 Kalman Filter

Example. Scalar linear system u ∈ R.

uk = auk−1 + ξk−1, ξk−1 ∼ N(0, σ2d)

vk = uk + εk , εk ∼ N(0, σ2o)

I The posterior p(uk |v1:k) is also Gaussian with mean mk and
variance C 2

k

mk =
m̃kσ

2
o + vk C̃

2
k

C̃ 2
k + σ2o

C 2
k =

C̃ 2
k σ

2
o

C̃ 2
k + σ2o

Idea of Proof. Match

−(uk − m̃k−1)2

2C̃ 2
k

− (vk − uk)2

2σ2o
= −(uk −mk)2

2C 2
k



17.2 Kalman Filter

Example. Scalar linear system u ∈ R.

uk = auk−1 + ξk−1, ξk−1 ∼ N(0, σ2d)

vk = uk + εk , εk ∼ N(0, σ2o)

I For consistency with another formula we will discuss later, the
mean and variance the following representation

mk = m̃k + K (vk − m̃k)

C 2
k = (1− K )C̃ 2

k

where K =
C̃2
k

C̃2
k+σ2

o
is called ”Kalman gain”.



17.2 Kalman Filter

Kalman filter for a d-dimensional linear system. For u ∈ Rd

uk = Auk−1 + ξk−1, ξ ∼ N(0,Σ)

vk = Huk + εk , ε ∼ N(0, Γ)

where Σ and Γ are symmetric positive definite matrices.

I The prior mean m̃k and covariance C̃k are given by

m̃k = Amk−1

C̃ 2
k = AC 2

k−1A
T + Σ

where mk−1 and Ck−1 are the mean and covariance of the
previous step posterior distribution p(uk−1|v1:k−1).



17.2 Kalman Filter

Kalman filter for a d-dimensional linear system. For u ∈ Rd

uk = Auk−1 + ξk−1, ξ ∼ N(0,Σ)

vk = Huk + εk , ε ∼ N(0, Γ)

where Σ and Γ are symmetric positive definite matrices.

I The posterior mean mk and covariance C 2
k are given by

mk = m̃k + Kk(vk − Hm̃k)

C 2
k = (1− KkH)C̃ 2

k

Kk = C̃ 2
kH

T
(
HC̃ 2

kH
T + Γ

)−1 (1)

where K is the Kalman gain matrix.



17.2 Kalman Filter

Example. A =

(
cos θ − sin θ
sin θ cos θ

)
with θ = 0.3. Σ = σ2I2.

Γ = σ2o I2.

True and noisy observation values.



17.2 Kalman Filter

Example. A =

(
cos θ − sin θ
sin θ cos θ

)
with θ = 0.3. Σ = σ2I2.

Γ = σ2o I2.

Kalman filtering result.



17.3 Continuous Time Model

Example. One of your homework problem (with different
notations)

du − γudt + σdw (2)

I It is straightforward to derive an equation for the mean

dE [u]

dt
= −γE [u]⇒ E [u] = u0e

−γt

I But not straightforward for the variance. Let u = E [u] + ũ.
Then

dũ

dt
= −γũ + σdw

1

2

dVar(u)

dt
=

1

2

dE [ũ2]

dt
= E [ũ

dũ

dt
]

= E
[
−γu2dt + σudw

]
??



17.3 Continuous Time Model

Example. One of your homework problem (with different
notations)

du − γudt + σdw (2)

Another approach using integrating factors and white noise.

I The solution to (2) is given by

u(t) = u0e
−γt + σ

∫ t

0
e−γ(t−s)dw(s).

I Note that E [u] = u0e
−γt and ũ = σ

∫ t
0 e−γ(t−s)dw(s).

I Var(u(t)) = E [ũ(t)2]

= E

[
σ2e−2γt

∫ t

0

∫ t

0
eγ(t

′+s′)v(t ′)v(s ′)dt ′ds ′
]

where v(t ′) is the white noise of w(t ′).



17.3 Continuous Time Model

Example. One of your homework problem (with different
notations)

du − γudt + σdw (2)

Another approach using integrating factors and white noise.

= σ2e−2γt
∫ t

0

∫ t

0
eγ(t

′+s′)E
[
v(t ′)v(s ′)

]
dt ′ds ′

= σ2e−2γt
∫ t

0

∫ t

0
eγ(t

′+s′)δ(t ′ − s ′)dt ′ds ′

= σ2e−2γt
∫ t

0
e2γt

′
dt ′

=
σ2

2γ

(
1− e−2γt

)



17.3 Continuous Time Model

Example. One of your homework problem (with different
notations)

du − γudt + σdw (2)

Therefore, we have

m(t) = E [u(t)] = u0e
−γt

C 2(t) =
σ2

2γ

(
1− e−2γt

)
Exercise. We assumed that u0 is a fixed value (not random).

What are the mean and variance of u(t) for u0 ∼ N(m0, σ
2
0) where

m0 and σ20 are fixed constants?


