Winter 2020 Math 106 Topics in Applied Mathematics Data-driven Uncertainty Quantification

Yoonsang Lee (yoonsang.lee@dartmouth.edu)

Data Assimilation Lecture 17: Kalman Filter

17.1 Data Assimilation

k: index for time $t = k\Delta t$ for a time interval Δt .

a system of interest with uncertainty

$$u_k = f(u_{k-1}) + \sigma_d \xi_{k-1}$$
$$\xi_k \sim N(0, \sigma_d^2)$$

observations available uniformly in time

$$v_k = g(u_k) + \epsilon_k$$

 $\epsilon_k \sim N(0, \sigma_0^2)$ observation error

Notation. $u_{1:k} = \{u_1, u_2, ..., u_k\}, v_{1:k} = \{v_1, v_2, ..., v_k\}.$ Goal of data assimilation. At $t = k\Delta t$, we want to estimate u_k using $v_{1:k}$.

$$p(u_k|v_{1:k}) = \frac{p(v_k|u_k)p(u_k|v_{1:k-1})}{p(v_k|v_{1:k-1})}$$

17.1 Data Assimilation

$$p(u_k|v_{1:k}) = \frac{p(v_k|u_k)p(u_k|v_{1:k-1})}{p(v_k|v_{1:k-1})}$$

Derivation.

$$\rho(u_{k}|v_{1:k}) = \frac{\rho(v_{1:k}|u_{k})\rho(u_{k})}{\rho(v_{1:k})} \\
= \frac{\rho(v_{k}, v_{1:k-1}|u_{k})\rho(u_{k})}{\rho(v_{1:k})} \\
= \frac{\rho(v_{k}|v_{1:k-1}, u_{k})\rho(v_{1:k-1}|u_{k})\rho(u_{k})}{\rho(v_{1:k})} \\
= \frac{\rho(v_{k}|v_{1:k-1}, u_{k})\rho(u_{k}|v_{1:k-1})\rho(v_{1:k-1})\rho(u_{k})}{\rho(v_{1:k})\rho(u_{k})} \\
= \frac{\rho(v_{k}|v_{1:k-1}, u_{k})\rho(u_{k}|v_{1:k-1})\rho(v_{1:k-1})}{\rho(v_{k}|v_{1:k-1})\rho(v_{1:k-1})} \\
= \frac{\rho(v_{k}|v_{1:k-1}, u_{k})\rho(u_{k}|v_{1:k-1})}{\rho(v_{k}|v_{1:k-1})} = \frac{\rho(v_{k}|u_{k})\rho(u_{k}|v_{1:k-1})}{\rho(v_{k}|v_{1:k-1})} \\
= \frac{\rho(v_{k}|v_{1:k-1}, u_{k})\rho(u_{k}|v_{1:k-1})}{\rho(v_{k}|v_{1:k-1})} = \frac{\rho(v_{k}|v_{1:k-1})}{\rho(v_{k}|v_{1:k-1})}$$

17.1 Data Assimilation

- $p(u_k|v_{1:k-1})$: prior density of u_k . This is calculated from the previous step posterior density $p(u_{k-1}|v_{1:k-1})$ using one of the methods to propagate uncertainty (MC, gPC, perturbation, etc).
- $p(v_k|u_k)$: likelihood of v_k . Under the Gaussian assumption of the observation error, we have

$$p(v_k|u_k) = \frac{1}{\sqrt{2\pi\sigma_o^2}} \exp\left(-\frac{(v_k - g(u_k))^2}{2\sigma_o^2}\right)$$

▶ $p(v_k|v_{1:k-1})$: normalization constant.

Example. Scalar linear system $u \in \mathbb{R}$.

$$u_k = au_{k-1} + \xi_{k-1}, \quad \xi_{k-1} \sim N(0, \sigma_d^2)$$
 $v_k = u_k + \epsilon_k, \quad \epsilon_k \sim N(0, \sigma_o^2)$

- Assume that $u_{k-1}|v_{1:k-1}$ is Gaussian with mean m_{k-1} and variance C_{k-1}^2 , which are the mean and variance of the previous step posterior density $p(u_{k-1}|v_{1:k-1})$.
- ► Then $p(u_k|v_{1:k-1})$ is also Gaussian with mean \tilde{m}_k and variance \tilde{C}_k^2

$$ilde{m}_k = am_{k-1}$$
 $ilde{C}_k^2 = a^2 C_{k-1}^2 + \sigma_d^2$

Example. Scalar linear system $u \in \mathbb{R}$.

$$u_k = au_{k-1} + \xi_{k-1}, \quad \xi_{k-1} \sim N(0, \sigma_d^2)$$
 $v_k = u_k + \epsilon_k, \quad \epsilon_k \sim N(0, \sigma_o^2)$

► The posterior $p(u_k|v_{1:k})$ is also Gaussian with mean m_k and variance C_k^2

$$m_k = \frac{\tilde{m}_k \sigma_o^2 + v_k \tilde{C}_k^2}{\tilde{C}_k^2 + \sigma_o^2}$$
$$C_k^2 = \frac{\tilde{C}_k^2 \sigma_o^2}{\tilde{C}_k^2 + \sigma_o^2}$$

Idea of Proof. Match

$$-\frac{(u_k - \tilde{m}_{k-1})^2}{2\tilde{C}_k^2} - \frac{(v_k - u_k)^2}{2\sigma_o^2} = -\frac{(u_k - m_k)^2}{2C_k^2}$$

Example. Scalar linear system $u \in \mathbb{R}$.

$$u_k = au_{k-1} + \xi_{k-1}, \quad \xi_{k-1} \sim N(0, \sigma_d^2)$$

 $v_k = u_k + \epsilon_k, \quad \epsilon_k \sim N(0, \sigma_o^2)$

► For consistency with another formula we will discuss later, the mean and variance the following representation

$$egin{aligned} egin{aligned} m_k &= ilde{m}_k + K(extsf{v}_k - ilde{m}_k) \ \hline C_k^2 &= (1 - K) ilde{C}_k^2 \end{aligned}$$

where $K = \frac{\tilde{C}_k^2}{\tilde{C}_k^2 + \sigma_o^2}$ is called "Kalman gain".

Kalman filter for a d-dimensional linear system. For $u \in \mathbb{R}^d$

$$u_k = Au_{k-1} + \xi_{k-1}, \quad \xi \sim N(0, \Sigma)$$
 $v_k = Hu_k + \epsilon_k, \quad \epsilon \sim N(0, \Gamma)$

where Σ and Γ are symmetric positive definite matrices.

lacktriangle The prior mean $ilde{m}_k$ and covariance $ilde{C}_k$ are given by

$$\tilde{m}_k = Am_{k-1}$$

$$\tilde{C}_k^2 = AC_{k-1}^2A^T + \Sigma$$

where m_{k-1} and C_{k-1} are the mean and covariance of the previous step posterior distribution $p(u_{k-1}|v_{1:k-1})$.

Kalman filter for a d-dimensional linear system. For $u \in \mathbb{R}^d$

$$u_k = Au_{k-1} + \xi_{k-1}, \quad \xi \sim N(0, \Sigma)$$
 $v_k = Hu_k + \epsilon_k, \quad \epsilon \sim N(0, \Gamma)$

where Σ and Γ are symmetric positive definite matrices.

▶ The posterior mean m_k and covariance C_k^2 are given by

$$m_{k} = \tilde{m}_{k} + K_{k}(v_{k} - H\tilde{m}_{k})$$

$$C_{k}^{2} = (1 - K_{k}H)\tilde{C}_{k}^{2}$$

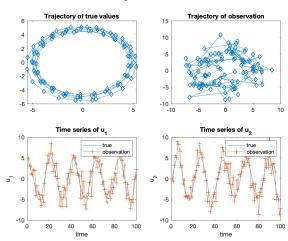
$$K_{k} = \tilde{C}_{k}^{2}H^{T}\left(H\tilde{C}_{k}^{2}H^{T} + \Gamma\right)^{-1}$$

$$(1)$$

where K is the **Kalman gain matrix**.

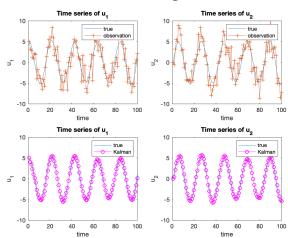
Example.
$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 with $\theta = 0.3$. $\Sigma = \sigma^2 I_2$. $\Gamma = \sigma_o^2 I_2$.

True and noisy observation values.



Example.
$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 with $\theta = 0.3$. $\Sigma = \sigma^2 I_2$. $\Gamma = \sigma_0^2 I_2$.

Kalman filtering result.



Example. One of your homework problem (with different notations)

$$du - \gamma u dt + \sigma dw \tag{2}$$

It is straightforward to derive an equation for the mean

$$\frac{dE[u]}{dt} = -\gamma E[u] \Rightarrow E[u] = u_0 e^{-\gamma t}$$

▶ But not straightforward for the variance. Let $u = E[u] + \tilde{u}$. Then

$$\begin{split} \frac{d\tilde{u}}{dt} &= -\gamma \tilde{u} + \sigma dw \\ \frac{1}{2} \frac{dVar(u)}{dt} &= \frac{1}{2} \frac{dE[\tilde{u}^2]}{dt} = E[\tilde{u} \frac{d\tilde{u}}{dt}] \\ &= E\left[-\gamma u^2 dt + \sigma u dw \right] ?? \end{split}$$

Example. One of your homework problem (with different notations)

$$du - \gamma u dt + \sigma dw \tag{2}$$

Another approach using integrating factors and white noise.

▶ The solution to (2) is given by

$$u(t) = u_0 e^{-\gamma t} + \sigma \int_0^t e^{-\gamma (t-s)} dw(s).$$

- Note that $E[u] = u_0 e^{-\gamma t}$ and $\tilde{u} = \sigma \int_0^t e^{-\gamma (t-s)} dw(s)$.
- $ightharpoonup Var(u(t)) = E[\tilde{u}(t)^2]$

$$=E\left[\sigma^{2}e^{-2\gamma t}\int_{0}^{t}\int_{0}^{t}e^{\gamma(t'+s')}v(t')v(s')dt'ds'\right]$$

where v(t') is the white noise of w(t').

Example. One of your homework problem (with different notations)

$$du - \gamma u dt + \sigma dw \tag{2}$$

Another approach using integrating factors and white noise.

$$\begin{split} &=\sigma^2 e^{-2\gamma t} \int_0^t \int_0^t e^{\gamma(t'+s')} E\left[v(t')v(s')\right] dt' ds' \\ &=\sigma^2 e^{-2\gamma t} \int_0^t \int_0^t e^{\gamma(t'+s')} \delta(t'-s') dt' ds' \\ &=\sigma^2 e^{-2\gamma t} \int_0^t e^{2\gamma t'} dt' \\ &=\frac{\sigma^2}{2\gamma} \left(1-e^{-2\gamma t}\right) \end{split}$$

Example. One of your homework problem (with different notations)

$$du - \gamma u dt + \sigma dw \tag{2}$$

Therefore, we have

$$m(t) = E[u(t)] = u_0 e^{-\gamma t}$$

$$C^{2}(t) = \frac{\sigma^{2}}{2\gamma} \left(1 - e^{-2\gamma t} \right)$$

Exercise. We assumed that u_0 is a fixed value (not random). What are the mean and variance of u(t) for $u_0 \sim N(m_0, \sigma_0^2)$ where m_0 and σ_0^2 are fixed constants?