Lecture 3: Information Theory
3.1 Entropy

Def. The entropy $H(X)$ of a random variable X with density $p(x)$ is defined as

$$H(X) = - \int_S p(x) \ln p(x) dx,$$

where S is the support of $p(x)$ (that is, the set where $p(x)$ is not zero).

Entropy depends only on the density $p(x)$ and thus entropy is sometime written as $H(p)$ rather than $H(X)$.
3.1 Entropy

Example. Let X is a Gaussian with density $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}$.

\[
H(p) = -\int p \ln p \, dx
= -\int p \left[-\frac{x^2}{2\sigma^2} - \ln \sqrt{2\pi\sigma^2}\right] \, dx
= \frac{E[X^2]}{2\sigma^2} + \frac{1}{2} \ln 2\pi\sigma^2
= \frac{1}{2} + \frac{1}{2} \ln 2\pi\sigma^2
= \frac{1}{2} \ln 2\pi e\sigma^2
\] (1)

Note. For a n-dimensional Gaussian X with mean zero and covariance K, $H(p) = \frac{1}{2} \ln (2\pi e)^m |K|$ where $|K|$ is the determinant of K.
3.2 Joint and Conditional Entropy

Def. The entropy of a set $X_1, X_2, ..., X_n$ of random variables with density $p(x_1, x_2, ..., x_n)$ is defined as

$$H(p(x_1, x_2, ..., x_n)) = - \int p(x_1, x_2, ..., x_n) \ln p(x_1, x_2, ..., x_n) dx_1 \cdots dx_n.$$

Def. If X and Y have a joint density $p(x, y)$, the conditional entropy $H(X|Y)$ is defined as

$$H(X|Y) = - \int p(x, y) \ln p(x|y) dx dy.$$
3.2 Joint and Conditional Entropy

Def. The entropy of a set X_1, X_2, \ldots, X_n of random variables with density $p(x_1, x_2, \ldots, x_n)$ is defined as

$$H(p(x_1, x_2, \ldots, x_n)) = -\int p(x_1, x_2, \ldots, x_n) \ln p(x_1, x_2, \ldots, x_n) \, dx_1 \cdots dx_n.$$

Def. If X and Y have a joint density $p(x, y)$, the conditional entropy $H(X|Y)$ is defined as

$$H(X|Y) = -\int p(x, y) \ln p(x|y) \, dx \, dy.$$

Q. Why not $-\int p(x|y) \ln p(x|y) \, dx \, dy$?
3.2 Joint and Conditional Entropy

Def. The entropy of a set $X_1, X_2, ..., X_n$ of random variables with density $p(x_1, x_2, ..., x_n)$ is defined as

$$H(p(x_1, x_2, ..., x_n)) = - \int p(x_1, x_2, ..., x_n) \ln p(x_1, x_2, ..., x_n) dx_1 \cdots dx_n.$$

Def. If X and Y have a joint density $p(x, y)$, the conditional entropy $H(X|Y)$ is defined as

$$H(X|Y) = - \int p(x, y) \ln p(x|y) dx dy.$$

Q. Why not $- \int p(x|y) \ln p(x|y) dx dy$?

Fact. $H(X|Y) = H(X, Y) - H(Y)$
3.3 Relative Entropy and Mutual Information

Def. The relative entropy (or Kullback-Leibler distance) $D(p, q)$ between two densities p and q is defined by

$$D(p, q) = \int p \ln \frac{p}{q} dx$$

D is a measure of the inefficiency of assuming that the distribution is q when the true distribution is p.

Def. The mutual information $I(X, Y)$ between two random variables with joint density $p(x, y)$ is defined as

$$I(X, Y) = \int p(x, y) \ln \frac{p(x, y)}{p(x)p(y)} dx dy.$$

Note.

$I(X, Y) = D(p(x, y), p(x)p(y)) = H(X) + H(Y) - H(X, Y)$.
3.3 Relative Entropy and Mutual Information

Example. Let \((X, Y)\) is a Gaussian with mean \((0, 0)\) and a covariance \(K = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}\).

\[
H(X) = H(Y) = \frac{1}{2} \ln(2\pi e) \quad \text{and} \quad H(X, Y) = \frac{1}{2} \ln(2\pi e) 2(1 - \rho^2).
\]

Therefore
\[
I(X, Y) = H(X) + H(Y) - H(X, Y) = -\frac{1}{2} \ln(1 - \rho^2).
\]

If \(\rho = 0\), \(X\) and \(Y\) are independent and the mutual information is 0.

If \(\rho = \pm 1\), \(X\) and \(Y\) are perfectly correlated and the mutual information is infinite.

Note. \(X\) and \(Y\) are Gaussian and thus zero correlation implies independence.
3.3 Relative Entropy and Mutual Information

Example. Let \((X, Y)\) is a Gaussian with mean \((0, 0)\) and a covariance \(K = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}\).

\[H(X) = H(Y) = \frac{1}{2} \ln(2\pi e) \quad \text{and} \quad H(X, Y) = \frac{1}{2} \ln(2\pi e)^2 (1 - \rho^2). \]

Therefore \(I(X, Y) = H(X) + H(Y) - H(X, Y) = -\frac{1}{2} \ln(1 - \rho^2). \) If \(\rho = 0\), \(X\) and \(Y\) are independent and the mutual information is 0. If \(\rho = \pm 1\), \(X\) and \(Y\) are perfectly correlated and the mutual information is infinite.

Note. \(X\) and \(Y\) are Gaussian and thus zero correlation implies independence.
3.4 Properties of entropy, relative entropy, and mutual information

Theorem.

\[D(p, q) \geq 0 \]

with equality iff \(p = q \) almost everywhere.

Proof.

\[
\begin{align*}
-D(p, q) &= \int p \ln \frac{q}{p} \, dx \\
&\leq \ln \int p \frac{q}{p} \, dx \quad \text{from Jensen’s inequality} \\
&= \ln \int g \\
&\leq \ln 1 = 0.
\end{align*}
\]

(2)

Corollary. \(I(X, Y) \geq 0 \) with equality iff \(X \) and \(Y \) are independent.
Corollary. \(H(X|Y) \leq H(X) \) with equality iff \(X \) and \(Y \) are independent.
Corollary. $H(X|Y) \leq H(X)$ with equality iff X and Y are independent. That is, collecting data decreases uncertainty (yay!).
3.4 Properties of entropy, relative entropy, and mutual information

Theorem. (Chain rule for entropy)

\[H(X_1, X_2, ..., X_n) = \sum H(X_i | X_1, X_2, ..., X_{i-1}). \]

Proof. Homework.

Corollary.

\[H(X_1, X_2, ..., X_n) \leq \sum H(X_i) \]

Hadamard’s inequality. If \(X \) is a Gaussian distribution with mean 0 and a covariance \(K \), we have

\[|K| \leq \prod_{i=1}^{n} K_{ii} \]

where \(|K| \) is the determinant of \(K \).
3.4 Properties of entropy, relative entropy, and mutual information

In Lecture 1, we have seen that the probability density maximizing entropy with a given mean and a variance is Gaussian. Now we show the following general result.

Theorem. Let the random vector $X \in \mathbb{R}^n$ have zero mean and covariance K. Then

$$H(X) \leq \frac{1}{2} \ln(2\pi e)^n |K|,$$

with equality iff X is Gaussian is the covariance K and mean zero. $|K|$ is the determinant of K.

Proof. Let $g(x)$ be any density satisfying $\int g(x)x_i x_j dx_i dx_j = K_{ij}$ for all i, j. Let ϕ_K be the density of the Gaussian $N(0, K)$. Then

$$0 \leq D(g, \phi_K) = \int g \ln(g/\phi_K) = -h(g) - \int g \ln \phi_K = -h(g) - \int \phi_K \ln \phi_K = -h(g) + h(\phi_K).$$ (3)
3.4 Properties of entropy, relative entropy, and mutual information

Theorem. (Estimation error) For any one-dimensional random variable X and estimator \hat{X},

$$E[(X - \hat{X})^2] \geq \frac{1}{2\pi e} e^{2H(X)},$$

with equality iff X is Gaussian and \hat{X} is the mean of X.

Proof. Let \hat{X} be any estimator of X. Then

$$E[(X - \hat{X})^2] \geq \min_{\hat{X}} E[(X - \hat{X})^2]$$
$$= E[(X - E[X])^2]$$
$$= Var(X)$$
$$\geq \frac{1}{2\pi e} e^{2H(X)}. \quad (4)$$
Homework

- Draw n values of the standard normal random variable, X.
- When $Y = X^2$, calculate $D(X, Y)$ using the sample. If you use a histogram in a sense, change the number of bins and check the change of the relative entropy.
- Compare the relative entropy with an analytic solution.