Winter 2019 Math 126
Topics in Applied Mathematics
Data-driven Uncertainty Quantification

Yoonsang Lee (yoonsang.lee@dartmouth.edu)

Lecture 4: Parametric Inference
4.1 Statistical Inference

Statistical inference or **learning** is the process of using data to infer the distribution that generated the data.

Therefore, we can estimate statistical functionals of the unknown distribution

Note that any map of a distribution is called a *statistical functional* of the distribution

\[F = F(P). \]

For example, for a distribution \(P(x) \) and its corresponding density \(p(x) \)

- \(E[X] = \int xp(x)dx \)
- \(\text{median} = P^{-1}(1/2) \)

For a sample of two random variables \(X \) and \(Y \) with a joint density \(p(x, y) \)

- \(E[Y|X = x] = \int yp(x, y)/p(x)dy \)
4.1 Statistical Inference

Example. Let X_1, X_2, \ldots, X_n is a sample from a density $p(x)$. Infer $p(x)$ using the sample.

1. If we assume that $p(x)$ is a Gaussian, we need to estimate only the mean and variance using the sample mean and variance

 $$\hat{m} = \frac{1}{n} \sum_i X_i$$

 and

 $$\hat{\sigma}^2 = \frac{1}{n-1} \sum_i (X_i - \hat{m})^2$$

2. Without assuming any form for $p(x)$, we estimate the $p(x)$ using a histogram.
4.1 Statistical Inference

Example. Let $X_1, X_2, ..., X_n$ is a sample from a density $p(x)$. Infer $p(x)$ using the sample.

1. If we assume that $p(x)$ is a Gaussian, we need to estimate only the mean and variance using the sample mean and variance

\[
\hat{m} = \frac{1}{n} \sum_i X_i
\]

and

\[
\hat{\sigma}^2 = \frac{1}{n-1} \sum_i (X_i - \hat{m})^2
\]

2. Without assuming any form for $p(x)$, we estimate the $p(x)$ using a histogram

Example 1 is an example of *parametric inference* (where the unknown parameters are the mean and the variance). Example is an example of *nonparametric inference*.
4.1 Statistical Inference

Broadly speaking, inferential problems fall into one of the three types

1. Point estimation
2. Confidence set (interval for 1D)
3. Hypothesis testing
4.1.1 Point Estimation

Let F be a statistical functional of an unknown distribution P and \{${X_i}$\} be an independent and identically distributed sample of P.

Point estimation provides a single best guess of F, often denoted by

$$\hat{F} = g(X_1, X_2, \ldots, X_n),$$

which is a function of the sample.
4.1.1 Point Estimation

Let F be a statistical functional of an unknown distribution P and
\{X_i\} be an independent and identically distributed sample of P.

Point estimation provides a single best guess of F, often denoted by

$$\hat{F} = g(X_1, X_2, ..., X_n),$$

which is a function of the sample.
This means that if we have a different sample \hat{F} changes. To be more precise, \hat{F} is a random variable.
4.1.1 Point Estimation

Let \(F \) be a statistical functional of an unknown distribution \(P \) and \(\{X_i\} \) be an independent and identically distributed sample of \(P \).

Point estimation provides a single best guess of \(F \), often denoted by

\[
\hat{F} = g(X_1, X_2, ..., X_n),
\]

which is a function of the sample.

The distribution of \(\hat{F} \) is called the **sampling distribution** and its standard deviation is called the **standard error**, denoted by \(se \).

\[
se = \sqrt{Var(\hat{F})}
\]
4.1.1 Point Estimation

Let F be a statistical functional of an unknown distribution P and \{${X_i}$\} be an independent and identically distributed sample of P.

Point estimation provides a single best guess of F, often denoted by

$$\hat{F} = g(X_1, X_2, ..., X_n),$$

which is a function of the sample.

- If the expected value of the point estimator is equal to the true value F_{true}, then the estimator is called unbiased.
- If the estimator converges in probability to the true value as the sample size, n, increases, the estimator is called consistent.
- The estimator is asymptotically Normal if the estimator converges in distribution to a normal as the sample size increases.
4.1.1 Point Estimation

The **mean squared error (MSE)** defined as

\[
E[(\hat{\theta} - \theta)^2]
\]

can be written as

\[
\text{MSE} = \text{bias}(\hat{\theta})^2 + \text{Var}(\hat{\theta}).
\]
4.1.1 Point Estimation

Example. Let $X_1, X_2, ..., X_n$ is a sample of a Bernoulli(p). The estimator of p is given by

$$\hat{p} = \frac{1}{n} \sum X_i.$$

▶ \hat{p} is unbiased.
▶ From the law of large numbers, it is also consistent.
▶ From the central limit theorem, it is asymptotically normal.
▶ The standard error $se = \sqrt{Var(\hat{p})} = \sqrt{\frac{p(1-p)}{n}}$.
▶ The estimated se uses the estimated \hat{p} for the standard error

$$\hat{se} = \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}.$$
4.1.2 Confidence Sets

Let \{X_i\} be an independent, identically distributed sample. A \(1 - \alpha\) confidence set is a set \(C\), which is a function of the sample, such that

\[\mu(F \in C) = 1 - \alpha. \]

That is, the probability that \(C\) traps the true value \(F\) is \(1 - \alpha\).

Example. Let \(F\) is a scalar value. If an estimator \(\hat{F}\) is asymptotically normal and the sample size \(n\) is large, the \(1 - \alpha\) confidence interval \(C_n\) is given by

\[(\hat{F} - z_{\alpha/2}\hat{s_e}, \hat{F} + z_{\alpha/2}\hat{s_e}) \]

where \(z = \Phi^{-1}(1 - (\alpha/2))\) for the standard normal distribution \(\Phi\).
4.1.2 Confidence Sets

Let \(\{X_i\} \) be an independent, identically distributed sample. A \(1 - \alpha \) confidence set is a set \(C \), which is a function of the sample, such that

\[
\mu(F \in C) = 1 - \alpha.
\]

That is, the probability that \(C \) traps the true value \(F \) is \(1 - \alpha \).

A frequently asked question for a data scientist position. The interpretation, ”the probability of the true value \(F \) is in the set \(C \) is \(1 - \alpha \)” is an incorrect statement.

When we construct a confidence set \(C \) using a sample \(\{X_i\} \), \(C \) is a random variable while the true value \(F \) is fixed. Thus, the definition of the confidence set

\[
\mu(F \in C) = 1 - \alpha.
\]

is about a probability of the random variable \(C \), not \(F \).
4.1.3 Hypothesis Testing

Hypothesis testing starts with a null hypothesis and check if the sample provide sufficient evidence to reject the theory. Check one of your favorite statistics books for details.
4.2 Parameteric Inference

Let \(\{ X_i \} \) be an IID sample of a distribution \(P \). In the parametric inference, we assume that the form of the unknown distribution is parameterized by a set of parameters \(\theta = (\theta_1, \ldots, \theta_m) \)

\[
P(x) = P(x; \theta).
\]

If we have an estimate of the parameter, say \(\hat{\theta} \), the estimator provides an estimate of the distribution \(P(x; \hat{\theta}) \).

Example.

- If we assume that the sample is from a Gaussian distribution with a mean \(m \) and a variance \(\sigma^2 \), the parameter is a pair \((m, \sigma^2)\).
- If we assume that the sample is from a Bernoulli\((p)\), the parameter is the mean \(p \).
4.2 Parameteric Inference

We will consider two methods for parametric inference

- Method of Moments
- Max Likelihood Estimator (MLE)
4.2.1 Method of Moments

For a sample X_1, X_2, \ldots, X_n, the j-th moment is

$$\alpha_j(\theta) = E[X^j] = \int x^j p(x; \theta) \, dx,$$

i.e., a function of θ,

where $p(x; \theta)$ is the parametrized density of the parametrized distribution $P(x; \theta)$. The j-th sample moment, $\hat{\alpha}_j$, is

$$\hat{\alpha}_j = \frac{1}{n} \sum_i X_i^j$$

If the size of the parameter θ is m, the method of moments estimator $\hat{\theta}$ is defined to be the value θ such that

$$\alpha_j(\hat{\theta}) = \hat{\alpha}_j, \quad j = 1, 2, \ldots, k.$$
4.2.1 Method of Moments

Example. Let $X_1, X_2, ..., X_n$ be an IID sample of Bernoulli(p).

- The size of parameter $\theta = p$ is 1.
- The first moment $\alpha_1(\theta) = \alpha_1(p) = p$ and the first sample moment $\hat{\alpha}_1$ is

$$\hat{\alpha}_1 = \frac{1}{n} \sum X_i.$$

- By setting $\alpha_1(\theta) = \hat{\alpha}_1$, we have

$$\hat{\theta} = \hat{p} = \frac{1}{n} \sum X_i.$$
4.2.1 Method of Moments

Example. Let $X_1, X_2, ..., X_n$ be an IID sample of Normal(m, σ^2).

- The size of parameter $\theta = (m, \sigma^2)$ is 2.
- The first and the second moments are

$$\alpha_1(m, \sigma^2) = \mu, \quad \alpha_2(m, \sigma^2) = m^2 + \sigma^2$$

- The sample first and the sample second moments are

$$\hat{\alpha}_1 = \frac{1}{n} \sum X_i, \quad \hat{\alpha}_2 = \frac{1}{n} \sum X_i^2$$

- Solving the system of equations gives

$$\hat{\mu} = \frac{1}{n} \sum X_i, \quad \hat{\sigma}^2 = \frac{1}{n} \sum (X_i - \hat{\mu})^2.$$

Note that σ^2 is biased (but consistent).
4.2.2 Maximum Likelihood Estimator

Let X_1, X_2, \ldots, X_n be IID with a density $p(x; \theta)$. The joint distribution of the sample $p(x_1, x_2, \ldots, x_n; \theta)$ is

$$p(x_1, x_2, \ldots, x_n; \theta) = \prod_i^n p(x_i; \theta) = p(x_1; \theta)p(x_2; \theta) \cdots p(x_n; \theta)$$

This joint density as a function of θ is called the **likelihood function**

$$\mathcal{L}_n(\theta) = \prod_i^n p(x_i; \theta).$$

The likelihood is the probability (density) of the sample under the assumption of the parametric model. Note that n is the sample size.

Warning. The likelihood function is not a density of θ.
4.2.2 Maximum Likelihood Estimator

Definition. The **maximum likelihood estimator** (MLE) $\hat{\theta}$ is the value θ that maximizes the likelihood function $L_n(\theta)$.
4.2.2 Maximum Likelihood Estimator

Definition. The maximum likelihood estimator (MLE) \(\hat{\theta} \) is the value \(\theta \) that maximizes the likelihood function \(\mathcal{L}_n(\theta) \).

Example. Let \(X_1, X_2, \ldots, X_n \) is IID Bernoulli(\(p \)). The likelihood function is

\[
\mathcal{L}_n(p) = \prod_i^n p^X_i (1 - p)^{1-X_i} = p^S (1 - P)^{n-S}
\]

where \(S = \sum X_i \).

Hence,

\[
\ln \mathcal{L}(p) = S \ln p + (n - S) \ln(1 - p).
\]

Take the derivative and set it equal to zero gives

\[
\hat{p} = \frac{S}{n}.
\]
4.2.2 Maximum Likelihood Estimator

Definition. The **maximum likelihood estimator** (MLE) $\hat{\theta}$ is the value θ that maximizes the likelihood function $\mathcal{L}_n(\theta)$.

Example. Let X_1, X_2, \ldots, X_n is IID Normal(m, σ^2). The likelihood function after a scaling is

$$
\mathcal{L}(m, \sigma) = \prod \frac{1}{\sigma} \exp \left(-\frac{1}{2\sigma^2} (X_i - m)^2 \right) = \sigma^{-n} \exp \left(-\frac{1}{2\sigma^2} \sum_i (X_i - m)^2 \right)
$$

$$
= \sigma^{-n} \exp \left(-\frac{nS^2}{2\sigma^2} \right) \exp \left(-\frac{n(\bar{X} - m)^2}{2\sigma^2} \right)
$$

where $\bar{X} = \frac{1}{n} \sum X_i$ and $S^2 = \frac{1}{n} \sum (X_i - m)^2$. The log-likelihood is

$$
l(m, \sigma) = -n \ln \sigma - \frac{nS^2}{2\sigma^2} - \frac{n(\bar{X} - m)^2}{2\sigma^2}.
$$

Solving the gradient of $l(m, \sigma)$ equal to zero gives

$$
\hat{m} = \bar{X} \quad \text{and} \quad \hat{\sigma} = S.
$$
4.2.2 Maximum Likelihood Estimator

Exercise. Let $X_1, X_2, ..., X_n$ is IID $\text{Uniform}(0, \theta)$. Find the MLE of θ.
4.2.3 Properties of MLE

Under certain conditions on the model, the MLE has the following properties

1. It is **consistent**. That is, $\hat{\theta}_n \rightarrow \theta_{true}$ in probability.

2. It is **equivalent**. If $\hat{\theta}_n$ is the MLE of θ, then $g(\hat{\theta})$ is the MLE of $g(\theta)$.

3. It is **asymptotically normal**. $\hat{\theta}_n - \theta_{true}$ converges in distribution to $N(0, se^2)$.

4. It is **asymptotically optimal**. That is, roughly speaking, among all well-behaved estimators, the MLE has the smallest variance, at least for large samples.

5. It is approximately the **Bayes estimator**.
4.2.3 Properties of MLE

Idea of the proof for the consistency.

- Maximizing $\mathcal{L}_n(\theta)$ is equivalent to maximizing

$$M_n(\theta) = \frac{1}{n} \sum \ln \frac{p(X_i; \theta)}{p(X_i; \theta_{true})}.$$

- From the law of large numbers, M_n converges to the expected value

$$E \left(\ln \frac{p(X; \theta)}{p(X; \theta_{true})} \right) = \int \ln \frac{p(x; \theta)}{p(x; \theta_{true})} p(x; \theta_{true}) dx \leq 0$$

with equality when $\theta = \theta_{true}$.
4.2.3 Properties of MLE

Idea of the proof for the asymptotically normal property.
For $l_n(\theta) = \log \mathcal{L}_n(\theta)$

$$0 = l'_n(\hat{\theta}) \approx l'_n(\theta) + (\hat{\theta} - \theta)l''_n(\theta)$$

which yields

$$\hat{\theta} - \theta = -\frac{l'_n(\theta)}{l''_n(\theta)}$$

From the central limit theorem, $l'_n(\theta)/\sqrt{n}$ converges in distribution to $N(0, I(\theta))$ where $I(\theta)$ is the variance of $\frac{\partial}{\partial x} \ln p(x; \theta)$.
Also, from the law of large numbers, $l''_n(\theta)/n$ converges in probability to the mean of $\frac{\partial^2}{\partial x^2} \ln p(x; \theta)$, which is $I(\theta)$.

Exercise. Show that the mean of $\frac{\partial}{\partial x} \ln p(x; \theta)$ is 0.

Exercise. Show that the mean of $\frac{\partial^2}{\partial x^2} \ln p(x; \theta)$ is the variance of $\frac{\partial}{\partial x} \ln p(x; \theta)$, that is $I(\theta)$.
4.2.3 Properties of MLE

- The **score function** is the first derivative of the parametrized density

\[s(X; \theta) = \frac{\partial}{\partial x} \ln p(x; \theta). \]

- The variance of the sum of the score functions is called **Fisher information**

\[I_n(\theta) = Var(\sum_{i=1}^{n} s(X_i; \theta)). \]

That is, the Fisher information is \(nI(\theta) \) where \(I(\theta) \) is the variance of the score function.
4.2.4 The Expectation-Maximization (EM) Algorithm

Goal: Find a θ that maximize $\mathcal{L}_n(\theta)$, i.e., the MLE estimator.

Algorithm:

1. Pick an initial value θ^0. For $j = 1, 2, \ldots$, repeat steps 1 and 2
2. (The E-step): Calculate

$$J(\theta|\theta^j) = E \left(\ln \frac{\prod p(x_i, y_i; \theta)}{\prod p(x_i, y_i; \theta^j)} | x \right)$$

This expectation is over the missing variable $\{y_i\}$ treating θ^j and $\{x_i\}$ are fixed.

3. Find θ^{j+1} maximizing $J(\theta|\theta^j)$.
4.2.4 The Expectation-Maximization (EM) Algorithm

Idea of the proof. We want to show that the procedure increases the likelihood, that is, \(\mathcal{L}(\theta^{j+1}) \geq \mathcal{L}(\theta^j) \).

From
\[
J(\theta^{j+1}|\theta^j) = E \left(\ln \frac{\prod p(x_i, y_i; \theta^{j+1})}{\prod p(x_i, y_i; \theta^j)} | \{x_i\} \right)
\]
\[
= \ln \frac{\mathcal{L}(\theta^{j+1})}{\mathcal{L}(\theta^j)} + E \left(\ln \frac{\prod p(y_i|x_i; \theta^{j+1})}{\prod p(y_i|x_i; \theta^j)} | \{x_i\} \right)
\]
we have
\[
\ln \frac{\mathcal{L}(\theta^{j+1})}{\mathcal{L}(\theta^j)} = J(\theta^{j+1}|\theta^j) - E \left(\ln \frac{\prod p(y_i|x_i; \theta^{j+1})}{\prod p(y_i|\{x_i\}; \theta^j)} | \{x_i\} \right)
\]
\[
= J(\theta^{j+1}|\theta^j) + D(f_j, f_{j+1}) \geq 0
\]
where \(f_j = \prod p(y_i|x_i; \theta^j) \).
4.2.4 The Expectation-Maximization (EM) Algorithm

Example. Let X_1, X_2, \ldots, X_n be a sample from a parametrized density

$$p(x) = \frac{1}{2} \phi(x; \mu_1, 1) + \frac{1}{2} \phi(x; \mu_0, 1)$$

where $\phi(x; \mu_i, 1)$ is a Gaussian density with a mean μ_i and a variance 1. Find the MLE.