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Lecture 6: Bayesian Inference



6.1 Bayesian inference

In the estimation problem of a variable θ of interest using a sample
a sample {Xi},
the conditional probability density of θ for the given sample {Xi} is
given by

p(θ|{Xi}) =
p(θ)p({Xi}|θ)∫
p(θ)p({Xi}|θ)dθ

from the Bayes’ theorem.

I p(θ) is a prior density of θ.

I p({Xi}|θ) is the likelihood of {Xi}.
I The denominator is a normalization constant.



6.1 Bayesian inference

In Lecture 4, we discussed a parametric inference problem using a
parameter θ and a sample {Xi}.
I Likelihood Ln(θ) = Πn

i p(Xi ; θ).

I The likelihood is not a probability density of θ.

I θ is a fixed value and we make probability statements only for
the random variables related to the sample for an increasing
sample size.

In Bayesian inference,

I We make probability statements about θ, that is, θ is a
random variable.

I The probability describes degree of belief.

I For example, ”the probability that it will rain tomorrow is .35”



6.1 Bayesian inference

What do we do with the posterior density?

I For a point estimate, we can use the mean of mode of the
posterior

I We can also obtain a Bayesian interval estimate C

µ(θ ∈ C |{Xi}) =

∫
C
p(θ|{Xi})dθ = 1− α.

Here, we assume that θ is a random variable and {Xi} is fixed.



6.2 Priors

I If we assume a constant for the prior, that is, a uniform
density, the mode of the posterior is equal to the maximum
likelihood estimator (MLE) because

p(θ|{Xi}) ≈ p({Xi}|θ).

Thus, MLE is related to the Bayesian estimator.

I However, this does not always hold; if θ ∈ R, there is no
uniform density on R because∫

R
cdx =∞.

for any constant c > 0.



6.2 Priors

I A constant prior is not transformation invariant.
Let’s assume a uniform prior density for θ ∈ (0, 1) because of
lack of any prior information. For a transformation of θ,
ψ = ln(θ/(1− θ)), we also have no prior information and we
may assume a uniform prior density for ψ.
It is a straightforward exercise to check that the density of ψ is

p(ψ) =
eψ

(1 + eψ)2

if we assume a uniform density for θ.



Exercise. Let X1,X2, ...,Xn be IID of N(θ, σ2) where θ is unknown
and σ is known. Suppose we take as a prior θ is N(aprior , b

2) where
aprior and b are known constants.

I The posterior is Gaussian, that is,
p(θ|{Xi}) = φ(x ; apost , b

2
post) where φ is a Gaussian density.

I The posterior mean and variance are

apost = k

(
1

n

∑
i

Xi

)
+(1−k)aprior = aprior+k

(
1

n

∑
i

Xi − aprior

)

where

k =
n
σ2

n
σ2 + 1

b2

and

b2post =
b2σ2/n

b2 + σ2/n



6.3 Kalman Filtering

I Kalman filter was co-invented and developed by R.E. Kalman
(National Medal of Science 2009).

I Kalman filter is also known as linear quadratic estimation
(LQE).

I Kalman filter uses a series of measurements observed over
time to estimate unknown variables.

I Kalman filter estimate the conditional density of unknown
variables at each time when measurements are available.



6.3 Kalman Filtering

um+1,post : posterior mean at the m + 1-th step.
um+1,prior : prior mean at the m + 1-th step.
vm+1: observation at the m + 1-th step.

um+1,post = um+1,prior + K (vm+1 − um+1,prior )

where K is the Kalman gain

K =
σ2m+1,prior

σ2obs + σ2m+1,prior


