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6.1 Bayesian inference

In the estimation problem of a variable 6 of interest using a sample

a sample {X;},
the conditional probability density of # for the given sample {X;} is

given by
W pO)P({Xi}]6)
PORXY) = T @) p({X110)d0

from the Bayes’ theorem.
» p(0) is a prior density of 6.
» p({Xi}|0) is the likelihood of {X;}.
» The denominator is a normalization constant.



6.1 Bayesian inference

In Lecture 4, we discussed a parametric inference problem using a
parameter 6 and a sample {X;}.

> Likelihood £,(0) = N7p(X;; 0).
» The likelihood is not a probability density of 6.

> 0 is a fixed value and we make probability statements only for
the random variables related to the sample for an increasing
sample size.

In Bayesian inference,

> We make probability statements about @, that is, 6 is a
random variable.

» The probability describes degree of belief.

P For example, "the probability that it will rain tomorrow is .35"



6.1 Bayesian inference

What do we do with the posterior density?

» For a point estimate, we can use the mean of mode of the
posterior

» We can also obtain a Bayesian interval estimate C

u0 € IO = [ p(Ol{x})d0 =1

Here, we assume that 6 is a random variable and {X;} is fixed.



6.2 Priors

» If we assume a constant for the prior, that is, a uniform
density, the mode of the posterior is equal to the maximum
likelihood estimator (MLE) because

p(O{Xi}) = p({Xi}0).

Thus, MLE is related to the Bayesian estimator.

» However, this does not always hold; if 6 € R, there is no
uniform density on R because

/CdX: 00.
R

for any constant ¢ > 0.



6.2 Priors

» A constant prior is not transformation invariant.
Let's assume a uniform prior density for § € (0,1) because of
lack of any prior information. For a transformation of 6,
¥ =1In(8/(1 — 0)), we also have no prior information and we
may assume a uniform prior density for .

It is a straightforward exercise to check that the density of v is
¥
e

if we assume a uniform density for 6.



Exercise. Let X1, X, ..., X, be 1ID of N(6,52) where 6 is unknown
and o is known. Suppose we take as a prior 6 is N(aprior, b?) where
aprior and b are known constants.

» The posterior is Gaussian, that is,
P(01{Xi}) = G(; apost, baost) Where ¢ is a Gaussian density.

P> The posterior mean and variance are

1
dpost = k ( ZX> 1 k apr:or = apr/or+k (n ZXi - aprior)

where
=
k= —¢
L+
and
b%c?/n

b2 —_
post = 2 o?/n



6.3 Kalman Filtering
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Kalman filter was co-invented and developed by R.E. Kalman
(National Medal of Science 2009).

Kalman filter is also known as linear quadratic estimation
(LQE).

Kalman filter uses a series of measurements observed over
time to estimate unknown variables.

Kalman filter estimate the conditional density of unknown
variables at each time when measurements are available.



6.3 Kalman Filtering

1. Forecast (prediction)
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Um+1,post: Posterior mean at the m + 1-th step.
Um+1,prior: Prior mean at the m + 1-th step.
Vm+1: Observation at the m + 1-th step.

Um+1,post = Um+1,prior + K(Vm+1 - um+1,prior)

where K is the Kalman gain
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