Math 13, Multivariable Calculus Written Homework 1

1. (a) Show that if f is a constant function of two variables (so $f(x, y)=k$ for some constant k) and $R=[a, b] \times[c, d]$, then

$$
\iint_{R} k d A=k(b-a)(d-c) .
$$

(b) Use part (a) to show that

$$
0 \leq \iint_{R} \sin (\pi x) \cos (\pi y) d A \leq \frac{1}{32}
$$

where $R=[0,1 / 4] \times[1 / 4,1 / 2]$.
2. Suppose that for all x and $y, f(x, y)=f(x,-y)$. If $R=[-a, a] \times[-b, b]$ and $S=$ $[-a, a] \times[0, b]$, what is the relationship between $\iint_{R} f(x, y) d A$ and $\iint_{S} f(x, y) d A$?
3. Find the average value of $f(x, y)=e^{y} \sqrt{x+e^{y}}$ over the rectangle $R=[0,4] \times[0,1]$.
4. Sketch the solid whose volume is given by the following iterated integral, and compute the value of the integral:

$$
\int_{0}^{1} \int_{0}^{1}\left(2-x^{2}-y^{2}\right) d y d x
$$

5. Evaluate the following integral by interchanging the order of integration:

$$
\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} e^{x^{4}} d x d y
$$

6. In evaluating a double integral over a region D , a sum of iterated integrals was obtained as follows:

$$
\iint_{D} f(x, y) d A=\int_{0}^{2} \int_{0}^{\sqrt{y}} f(x, y) d x d y+\int_{2}^{4} \int_{y-2}^{\sqrt{y}} f(x, y) d x d y
$$

Sketch the region D and express the double integral as an iterated integral with reversed order of integration.

