Math 13, Multivariable Calculus Written Homework 3

1. (Ch $15.8, \# 28)$ Find the mass of a ball B given by $x^{2}+y^{2}+z^{2} \leq a^{2}$ if the density at any point is proportional to its distance from the z-axis.
Hint: even though both cylindrical and spherical coordinates work for this problem, spherical coordinates give a simpler integral.
2. (Ch $15.9, \# 28)$ Find the average distance from a point in a ball of radius a to its center.
3. (Ch $12.4, \# 48)$ If $\mathbf{a}+\mathbf{b}+\mathbf{c}=0$, show that

$$
\mathbf{a} \times \mathbf{b}=\mathbf{b} \times \mathbf{c}=\mathbf{c} \times \mathbf{a}
$$

4. (Ch $15.10, \# 18)$ Evaluate $\iint_{R}\left(x^{2}-x y+y^{2}\right) d A$, where R is the region bounded by the ellipse $x^{2}-x y+y^{2}=2$. Use the change of variables $x=\sqrt{2} u-\sqrt{2 / 3} v, y=$ $\sqrt{2} u+\sqrt{2 / 3} v$.
5. (Ch 15.10, \#14) Let R be the region bounded by hyperbolas $y=1 / x, y=4 / x$, and the lines $y=x, y=4 x$, in the first quadrant. Find equations for a transformation T that maps a rectangular region S in the $u v$-plane onto R, where the sides of S are parallel to the u - and v - axes.
6. (Ch 15.10, \#19) Use the transformation $x=u / v, y=v$ to evaluate the integral $\iint_{R} x y d A$, where R is the region in the first quadrant bounded by the lines $y=x$ and $y=3 x$ and the hyperbolas $x y=1, x y=3$.
