Math 13, Multivariable Calculus Written Homework 4

1. (Ch $12.3, \# 54$,$) If \mathbf{r}=\langle x, y, z\rangle, \mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, show that the vector equation $(\mathbf{r}-\mathbf{a}) \cdot(\mathbf{r}-\mathbf{b})=0$ represents a sphere, and find its center and radius.
2. (Ch 13.2, \#34) At what point do the curves $\mathbf{r}_{1}(t)=\left\langle t, 1-t, 3+t^{2}\right\rangle$ and $\mathbf{r}_{2}(s)=$ $\left\langle 3-s, s-2, s^{2}\right\rangle$ intersect? Find their angle of intersection. (You can write your answer as the value of an inverse trigonometric function.)
3. Find the length of the curve $\mathbf{r}(t)=\left\langle 2 t^{3 / 2}, \cos 2 t, \sin 2 t\right\rangle$ on the interval $0 \leq t \leq 1$.
4. (Ch 14.3, \#72) If $g(x, y, z)=\sqrt{1+x z}+\sqrt{1-x y}$, find $g_{x y z}$. (Hint: use a different order of differentiation for each term if you want to keep calculations simple.)
5. (Ch 14.4, \#42) Suppose you need to know an equation of the tangent plane to a surface S at the point $P(2,1,3)$. You don't have an equation for S but you know that the curves

$$
\mathbf{r}_{1}(t)=\left\langle 2+3 t, 1-t^{2}, 3-4 t+t^{2}\right\rangle, \quad \mathbf{r}_{2}(u)=\left\langle 1+u^{2}, 2 u^{3}-1,2 u+1\right\rangle
$$

both lie on S. Find an equation of the tangent plane at P.

