Math 13, Multivariable Calculus Written Homework 5

1. (Ch 16.1, \#26) Find the gradient vector field ∇f of $f(x, y)=\sqrt{x^{2}+y^{2}}$ and sketch it.
2. (Ch 16.2, \#16) Evaluate the line integral

$$
\int_{C}(y+z) d x+(x+z) d y+(x+y) d z
$$

where C is the concatenation of the line segment from $(0,0,0)$ to $(1,0,1)$ with the line segment from $(1,0,1)$ to $(0,1,2)$.
3. (Ch 16.2, \#32(a)) Find the work done by the force field $\mathbf{F}(x, y)=x^{2} \mathbf{i}+x y \mathbf{j}$ on a particle that moves once around the circle $x^{2}+y^{2}=4$ oriented in the counterclockwise direction.
4. (Ch 16.2, \#34) A thin wire has the shape of the first-quadrant part of the circle with center the origin and radius a. If the density function is $\rho(x, y)=k x y$, find the mass and center of mass of the wire.
5. (Ch 16.2, \#42) The force exerted by a unit electric charge at the origin on a charged particle at a point (x, y, z) is $\mathbf{F}(\mathbf{r})=\mathbf{r} /|\mathbf{r}|^{3}$, where $\mathbf{r}=\langle x, y, z\rangle$. Find the work done as the particle moves along a straight line from $(2,0,0)$ to $(2,1,5)$.
6. (Ch 16.3, \#14) Find a potential function $f(x, y)$ for $\mathbf{F}=\left\langle(1+x y) e^{x y}, x^{2} e^{x y}\right\rangle$, and evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is given by $\mathbf{r}(t)=\langle\cos t, 2 \sin t\rangle, 0 \leq t \leq \pi / 2$.

