Math 13, Multivariable Calculus Written Homework 6

1. (Ch 16.3, \#29) Show that if the vector field $\mathbf{F}=\langle P, Q, R\rangle$ is conservative and P, Q, R have continuous first-order partial derivatives, then

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \quad \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}, \quad \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y} .
$$

2. (Ch 16.3, \#35) Let $\mathbf{F}=\frac{-y \mathbf{i}+x \mathbf{j}}{x^{2}+y^{2}}=\langle P, Q\rangle$.
(a) Show that $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$.
(b) Show that $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is not independent of path. Stewart's Hint: Consider two different semicircular paths from $(1,0)$ to $(-1,0)$. You could also use Theorem 3 in section 16.3. Does this contradict Theorem 6?
3. (Ch 16.3, \#36a) Suppose that \mathbf{F} is an inverse square field; that is,

$$
\mathbf{F}(\mathbf{r})=\frac{c \mathbf{r}}{|\mathbf{r}|^{3}}
$$

for some constant c, where $\mathbf{r}=\langle x, y, z\rangle$. Find the work done by \mathbf{F} in moving an object from a point P_{1} along a path to a point P_{2} in terms of the distances d_{1}, d_{2} from these points to the origin.
4. (Ch 16.4, \#2) Evaluate the line integral below by using two methods: direct evaluation and Green's Theorem, and check that the answers are identical.

$$
\int_{C} x y d x+x^{2} d y
$$

where C is the rectangle (with positive orientation) with vertices (0,0), (3,0), (3,1), (0,1).
5. Verify Green's Theorem for $P(x, y)=x$ and $Q(x, y)=x y$, where D is the unit disk $x^{2}+y^{2} \leq 1$.
6. Compute

$$
\int_{C}\left(e^{x^{2}} d x+d y\right)
$$

where C is the semicircle $x^{2}+y^{2}=1, x \geq 0$ traced from $(0,-1)$ to $(0,1)$.

