## Math 13, Multivariable Calculus Written Homework 7

1. (Chapter 16.4, $\# 22$ ) Let $D$ be a region bounded by a simple closed path $C$ in the $x y$-plane. Use Green's Theorem to prove that the coordinates $(\bar{x}, \bar{y})$ of the centroid (the centroid is the center of mass of $D$, if we assume that $D$ is a lamina of uniform density $\rho$ and area $A$ ) of $D$ are

$$
\bar{x}=\frac{1}{2 A} \int_{C} x^{2} d y, \quad \bar{y}=-\frac{1}{2 A} \int_{C} y^{2} d x
$$

2. (Chapter $16.5, \# 20)$ Is there a smooth vector field $\mathbf{G}$ on $\mathbb{R}^{3}$ such that $\nabla \times \mathbf{G}=$ $\left\langle x y z,-y^{2} z, y z^{2}\right\rangle$ ? Explain.
3. (Chapter 16.5, \#25.) Prove $\operatorname{div}(f \mathbf{F})=f \operatorname{div} \mathbf{F}+\mathbf{F} \cdot \nabla f$ assuming that the appropriate partial derivatives exist and are continuous. Here $\mathbf{F}=\langle P, Q, R\rangle$ and $P, Q, R, f$ are all scalar-valued functions of the variables $x, y, z$.
4. (Chapter $16.6, \# 24)$ Find a parametric representation for the surface which is the part of the sphere $x^{2}+y^{2}+z^{2}=16$ which lies between the planes $z=-2$ and $z=2$.
5. (Chapter 16.6, \#26) Find a parametric representation for the part of the plane $z=x+3$ that lies inside the cylinder $x^{2}+y^{2}=1$.
6. (Chapter 16.6, \#36) Let $\mathbf{r}(u, v)=\langle\sin u, \cos u \sin v, \sin v\rangle$. Find an equation for the tangent plane to this surface at $u=\pi / 6, v=\pi / 6$.
