Math 13, Multivariable Calculus Written Homework 8

1. (Chapter 16.6, \#42) Find the surface area of the part of the cone $z=\sqrt{x^{2}+y^{2}}$ that lies between the plane $y=x$ and the parabolic cylinder $y=x^{2}$.
2. (Chapter 16.6, \#64a) Find a parametric representation for the torus obtained by rotating about the z-axis the circle in the $x z$-plane with center $(b, 0,0)$ and radius $a<b$. (See the textbook for a picture and a relevant hint.)
3. (Chapter $16.6, \# 64 \mathrm{c}$) Use the parametric representation from the previous problem to find the surface area of the torus.
4. (Chapter 16.7, \#4) Suppose that $f(x, y, z)=g\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)$, where g is a function of one variable such that $g(2)=-5$. Evaluate $\iint_{S} f(x, y, z) d S$, where S is the sphere $x^{2}+y^{2}+z^{2}=4$.
5. Evaluate the surface integral $\iint_{S} \sqrt{1+x^{2}+y^{2}} d S$, where S is the helicoid with vector equation $\mathbf{r}(u, v)=u \cos v \mathbf{i}+u \sin v \mathbf{j}+v \mathbf{k}, 0 \leq u \leq 1,0 \leq v \leq \pi$.
6. (Chapter 16.7, \#39) Find the center of mass of the hemisphere $x^{2}+y^{2}+z^{2}=a^{2}, z \geq 0$, if it has constant density.
