Math 13, Multivariable Calculus Written Homework 9

1. (Chapter 16.7, $\# 29)$ Let $\mathbf{F}=\langle x, 2 y, 3 z\rangle$, and let S be the cube with vertices $(\pm 1, \pm 1, \pm 1)$ with positive orientation. Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$.
2. (Chapter 16.7, \#49) Let \mathbf{F} be an inverse square vector field (that is, $\mathbf{F}(\mathbf{r})=c \mathbf{r} /|\mathbf{r}|^{3}$ for some constant c, where $\mathbf{r}=\langle x, y, z\rangle$). Show that the flux of \mathbf{F} across a sphere S centered at the origin is independent of the radius of S.
3. (Chapter 16.9, \#18) Let $\mathbf{F}=\left\langle z \tan ^{-1}\left(y^{2}\right), z^{3} \ln \left(x^{2}+1\right), z\right\rangle$. Find the flux of \mathbf{F} across the part of the paraboloid $x^{2}+y^{2}+z=2$ that lies above the plane $z=1$ and is oriented upwards.
4. (Chapter 16.9, \#24) Use the Divergence Theorem to evaluate

$$
\iint_{S}\left(2 x+2 y+z^{2}\right) d S
$$

where S is the sphere $x^{2}+y^{2}+z^{2}=1$.
5. (Chapter 16.8, \#17) A particle moves along line segments from the origin to the points $(1,0,0),(1,2,1),(0,2,1)$, and then back to the origin under the influence of the force field $\mathbf{F}=\left\langle z^{2}, 2 x y, 4 y^{2}\right\rangle$. Find the work done in two separate ways: (a) by directly calculating this line integral, and (b) by using Stokes' Theorem with a suitable choice of surface S.
6. (Chapter 16.8, \#18) Evaluate

$$
\int_{C}(y+\sin x) d x+\left(z^{2}+\cos y\right) d y+x^{3} d z
$$

where C is the curve $\mathbf{r}(t)=\langle\sin t, \cos t, \sin 2 t\rangle, 0 \leq t \leq 2 \pi$.
(Hint: Observe that C lies on the surface $z=2 x y$.)

