Math 13 Homewark 3 Solutions

Q1 moved to homework 4.
2) Find the average value of the function $f(x, y, z)=y$ over the region W in the first octant lying above $z=2 x$ and below $z=1-y^{2}$

Region is z-simple. Shadow on the $x y$-plane is... first we need the intersection curve of the surfaces.

$$
2 x=1-y^{2} \Rightarrow y^{2}=1-2 x \Rightarrow y=\sqrt{1-2 x}
$$

First we need the volume of the solid.

$$
\int_{y=0}^{y=1} \int_{y}
$$

$$
\begin{aligned}
& \text { Volume }(\omega)=\int_{y=0}^{y=1} \int_{x=0}^{x=1-\frac{y^{2}}{2}} \int_{z=2 x}^{z=1-y^{2}} 1 d z d x d y \\
& =\int_{y=0}^{y=1} \int_{x=0}^{x=1-y^{2}}[z]_{z=2 x}^{z=1-1 x^{2}} d x d y=\int_{y=0}^{y=1} \int_{x=0}^{x=\frac{1-y^{2}}{2}}\left(1-y^{2}-2 x\right) d x d y \\
& =\int_{y=0}^{y=1}\left[x-x^{2}-x y^{2}\right]_{x=0}^{x=\frac{1-y^{2}}{2}} d y=\int_{y=0}^{y=1}\left(\left(\frac{1-y^{2}}{2}\right)-\left(\frac{1-y^{2}}{}\right)^{2}-\left(\frac{1-y^{2}}{2}\right) y^{2}\right) d y \\
& =\int_{y=0}^{y=1}\left(\frac{1}{2}-\frac{y^{2}}{2}-1 y^{2}+\frac{y^{2}}{2}-\frac{y}{4}-\frac{y^{2}}{2}+y^{y}\right) d y \\
& =\int_{y=0}^{y=1}\left(\frac{y^{4}}{4}-\frac{y^{2}}{2}+\frac{1}{4}\right) d y=\left[\frac{y^{5}}{20}-\frac{y^{3}}{6}+\frac{y^{4}}{4}\right]_{y=0}^{x=1} \\
& =\frac{1}{20}-\frac{1}{6}+\frac{1}{4}=\frac{3}{60}-\frac{10}{60}+\frac{15}{60}=\frac{8}{60}=\frac{2}{15}
\end{aligned}
$$

Next we need $\iiint_{W} y d V$
But there's a shortcut! Tres integral is:

$$
\int_{y=0}^{y=1} \int_{x=0}^{x=\frac{1-y^{2}}{2}} \int_{z=2 x}^{z-1-y^{2}} y d z d x d y=\int_{y=0}^{y=1}\left(y \cdot\left(\int_{x=0}^{x=\frac{y^{2}}{2}} \int_{z=2 x}^{z=-y^{2}} 1 d z d x d y\right)\right.
$$

and we already found n the last step that this equals $\frac{y^{4}}{4}-y^{2}+\frac{1}{4}$. So,

$$
\begin{aligned}
& \iiint_{\omega} y d=\int_{y=0}^{y=1} y\left(\frac{y^{4}}{4}-\frac{y^{2}}{2}+\frac{1}{4}\right) d y= \\
& {\left[\frac{y^{6}}{24}-\frac{y^{4}}{8}+\frac{y^{2}}{8}\right]_{y=0}^{y=1}=\frac{1}{24}-\frac{1}{8}+\frac{1}{8}=\frac{1}{24}}
\end{aligned}
$$

Therefore, the average y-value is

$$
\frac{1 / 24}{2 / 15}=\frac{1}{24} \cdot \frac{15}{2}=\frac{15}{48}=\frac{5}{16}
$$

3) Express, but do not evaluate, the integral of $x+2 y+z$ over the region on the first octant above $z=\sqrt{x^{2}+y^{2}}$ and below the surface $z=\sqrt{4-x^{2}-y^{2}}$ in
a) Cartesian coordinates

We need a picture! $\sqrt{x^{2}+y^{2}}$ is the distance from $(0,0)$
 to (x, y). So after alittle thinking, we see $z=\sqrt{x^{2}+y^{2}}$ is a cone with the point at $(0,0)$.

What is $z=\sqrt{4-x^{2}-y^{2}}$?

$$
\begin{aligned}
& \Rightarrow z^{2}=4-x^{2}-y^{2} \\
& \Rightarrow x^{2}+y^{2}+z^{2}=4
\end{aligned}
$$

\Rightarrow sphene with center $(0,0,0)$ and radius 3 .

Where do they intersect?

$$
\begin{array}{ll}
& \sqrt{x^{2}+y^{2}}=\sqrt{4-x^{2}-y^{2}} \\
\Rightarrow & x^{2}+y^{2}=4-x^{2}-y^{2} \\
\Rightarrow & 2 x^{2}+2 y^{2}=4 \\
\Rightarrow & x^{2}+y^{2}=2
\end{array}
$$

\Rightarrow circle in $x y$-plane with.

first quadrant of
circle in ${ }^{\prime}$ xy-plane with radius $\sqrt{2}$ is

$$
\begin{aligned}
& x \text { in }[0, \sqrt{2}] \\
& y \text { in }\left[0, \sqrt{2-x^{2}}\right]
\end{aligned}
$$

So, $\int_{x=0}^{x=\sqrt{2}} \int_{y=0}^{y=\sqrt{2-x^{2}}} \int_{0}^{z=\sqrt{4-x^{2}-y^{2}}}(x+2 y+z) d z d y d x$
b) Cylindrical
firest quadrant of circle in xy-plane with radus $\sqrt{2}=$

$$
\begin{aligned}
& \theta \text { in }[0,4] \\
& \operatorname{rin}[0, \sqrt{2}]
\end{aligned}
$$

$$
\begin{aligned}
& z M\left[\begin{array}{cc}
\sqrt{x^{2}+y^{2}}, & \sqrt{4-x^{2}-y^{2}} \\
\| & \| \\
r & \|^{4-r^{2}}
\end{array}\right. \\
& \Rightarrow \quad z i n\left[r, \sqrt{4-r^{2}}\right] \text {. } \\
& x+2 y+z \rightarrow r \cos \theta+2 r \sin (\theta)+z
\end{aligned}
$$

cornection facter a
Putting all together.

$$
\int_{\theta=0}^{\theta=\int_{r=0}^{\pi / 2}} \int_{z=r}^{r=\sqrt{2}} \int_{z=\sqrt{4-r^{2}}} r(r \cos (\theta)+2 r \sin (\theta)+z) d z d r d \theta
$$

c) Spherical
θ is easy, it goes all the way arand the fins quadrant θ in $[0, \pi]^{\pi / 2}$

What is the range for $\varphi \geq$ Look at the $x z$ plane:

So φ starts at O (straight up) to $\pi / 4 \quad(0,0)$ to $(\sqrt{2}, \sqrt{2})$.
range: Fran 0 to end of sphere (2).

$$
x+2 y+z \rightarrow \rho \sin (\varphi) \cos (\theta)+2 \rho \sin (\varphi) \sin (\theta)+\rho \cos (\varphi)
$$

correction factor: $\rho^{2} \sin (\varphi)$
$\pi / 2$

$$
\rightarrow \int_{\theta=0}^{\theta=0} \int_{\varphi=0}^{\varphi=\pi / 4} \int_{\rho=0}^{\rho=2} \rho^{3} \sin (\varphi)(\sin (\varphi) \cos (\theta)+\sin (\varphi) \sin (\theta)+\cos (\varphi)) d \rho d \varphi d \theta
$$

4) Let ω be the solid region with n $x^{2}+y^{2}=1$, above the paraboloid $z=1-x^{2}-y^{2}$ and below the plane $z=2$. Integrate $\sqrt{x^{2}+y^{2}}$ over this region.

How do these two intersect?
Thunk of it as: where does $z=1-x^{2}-y^{2}$ break out of the cinder?)
When $x^{2}+y^{2}=1$ (meaning, you'ne on the boundary of the cylinder), the paraboloid is at height $z=1-x^{2}-y^{2}=1-(\underbrace{x^{2}+y^{2}}_{=1})=0$.

So, the shape is the cylinder, capped at $z=2$, and with a hemisphere cut out of the bottom.

Integrating $\sqrt{x^{2}+y^{2}} \rightarrow r$

$$
\begin{aligned}
S_{0}, \int_{\theta=0}^{\theta=2 \pi} & \int_{r=0}^{r=1} \int_{z=1-r^{2}}^{z=2} r^{2} d z d r d \theta \\
& =\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=1}\left[r^{2} z\right]_{z=1-r^{2}}^{z=2} d r d \theta
\end{aligned}
$$

Cylindrical coarduates are best:

$$
\begin{aligned}
& \theta \text { in }[0,2 \pi] \\
& \operatorname{rin}[0,1] \\
& \operatorname{zin}\left[1-x^{2}-y^{2}, 2\right]
\end{aligned}
$$

$$
\left[1-r^{2}, 2\right]
$$

$$
\begin{aligned}
& =\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=1} \underbrace{2 r^{2}-\left(r^{2}\left(1-r^{2}\right)\right)}_{r^{2}+r^{4}}) d r d \theta \\
& =\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=1}\left(r^{2}+r^{4}\right) d r d \theta \\
& =\int_{\theta=0}^{\theta=2 \pi}\left[\frac{r^{3}}{3}+\frac{5}{5}\right]_{r=0}^{r=1} d \theta=\int_{\theta=0}^{\theta=2 \pi}\left(\frac{1}{3}+\frac{1}{5}\right) d \theta \\
& =\left[\frac{8}{15} \theta\right]_{\theta=0}^{\theta=2 \pi}=\frac{16 \pi}{15} .
\end{aligned}
$$

