WEDNESDAY MARCH 26TH LECTURE NOTES

1. Vectors

- Vectors have a magnitude and direction
- We most often represent vectors using the format $\langle x, y, z\rangle$ or $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.
- The magnitude, or length, of a vector in the $\langle x, y, z\rangle$ format can be easily found to be [using pythagorean theorem] $\sqrt{x^{2}+y^{2}+z^{2}}$

2. Dot Product

- The dot product, $\mathbf{a} \cdot \mathbf{b}$ of vectors \mathbf{a}, \mathbf{b} is always equal to $|a||b| \operatorname{Cos}(\theta)$, where θ is the angle between the vectors. Note that the dot product is always a number, rather than a vector.
- If \mathbf{a}, \mathbf{b} are perpendicular, $\mathbf{a} \cdot \mathbf{b}=0$.
- if \mathbf{a}, \mathbf{b} are parallel, $\mathbf{a} \cdot \mathbf{b}=|a||b|$.
- $|\mathbf{a}|^{2}=\mathbf{a} \cdot \mathbf{a}$
- $\left\langle x_{1}, y_{1}, z_{1}\right\rangle \cdot\left\langle x_{2}, y_{2}, z_{2}\right\rangle=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$

3. Cross Product

- The cross product of two vectors is always perpendicular to both.
- The magnitude of the cross product is equal to the area of the parallelogram determined by the vectors.
- The direction of the cross product can be ascertained by using the "righthand rule."
- The cross product can also be calculated as $\langle a, b, c\rangle \times\langle d, e, f\rangle=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ a & b & c \\ d & e & f\end{array}\right|$

[^0]
[^0]: This page of notes brought to you by the letters D, R, and the number "orange".

