Math 13

May 2005 Second Practice Midterm

NAME (Print!):

Problem	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	5	
7	5	
8	5	
9 (Take home)	25	
10 (Take home)	20	
11 (Take home)	15	
Total	100	

On the real exam, these will all be multiple choice. For the added challenge on this practice exam, I'm just asking the questions without choices. You should think about what things I might have written for choices.

Problem 1 (5 points): Changing the order of integration in

$$\int_0^1 \int_{y^2}^{2-y} f(x,y) \, dx \, dy$$

gives what integral (you may have to write this as the sum of two integrals).

Problem 2 (5 points): Sketch the solid whose volume is given by

$$\int_0^{2\pi} \int_0^2 \int_0^{4-r^2} r \, dz \, dr \, d\theta.$$

Problem 3 (5 points): Sketch the solid whose volume is given by

$$\int_1^3 \int_0^{\frac{\pi}{2}} \int_r^3 r dz \, d\theta \, dr.$$

Problem 4 (5 points): Sketch the solid whose volume is given by

$$\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \int_0^1 \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta.$$

Problem 5 (5 points): Sketch the solid whose volume is given by

$$\int_0^{\frac{\pi}{3}} \int_0^{2\pi} \int_0^{\sec \phi} \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi.$$

- **Problem 6 (5 points):** Two of the integrals in Problems 2 through 5 can be evaluated without integration. Evaluate them using geometry.
- **Problem 7 (5 points):** Is the following true or false? If it's true prove it, if it's false give a counter example: Suppose $f : \mathbb{R}^3 \to \mathbb{R}$ and F is a vector field on \mathbb{R}^3 . Then

$$\operatorname{div}(f\mathbf{F}) = f\operatorname{div}\mathbf{F} + \mathbf{F} \cdot \nabla f.$$

Problem 8 (5 points): Is the following true or false? If it's true, prove it, if it's false, give a counter example: Suppose F is a vector field on \mathbb{R}^3 . Then $\operatorname{curl}(F) = 0$.

- **Problem 9 (20 points):** Find the mass and the center of mass of the lamina that occupies the region D bounded by the parabola $x = 1 y^2$ and the coordinate axes in the first quadrant if the denisty function is $\delta(x, y) = y$.
- function is $\delta(x, y) = y$. **Problem 10 (20 points):** Express the integral $\int \int \int_W f(x, y, z) \, dV$ in six different ways where W is bounded by $x^2 + z^2 = 4$, y = 0 and y = 6 and is expressed in rectangular co-ordinates.
- Problem 11 (20 points): Find the following two volumes:
 - (a) The solid that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = z$.