1. (10) (Show all work). Let $T(x, y, z)=x^{3}+y^{4}-x y z^{2}$. Determine whether T is increasing or decreasing at the point $(1,-2,1)$ in the direction of the vector $\mathbf{u}=(1 / \sqrt{3},-1 / \sqrt{3},-1 / \sqrt{3})$.
2. (15) (Show all work). The level surface $G(x, y, z)=(x-2)^{4}+(y-2)^{4}+(z-1)^{2}=3$ and graph of $f(x, y)=4-x^{2}-y^{2}$ are two surfaces which intersect at the point $(1,1,2)$. Determine whether or not they are tangent at that point, that is, whether they have the same tangent plane.
3. (15) (Show all work).
(a) Let $\mathbf{g}(x, y)=\left(x+y, x^{2}-y^{2}, x^{3} y\right)$. Find the derivative matrix $D \mathbf{g}(1,2)$.
(b) Suppose that $\mathbf{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ has derivative matrix $D \mathbf{f}=\left(\begin{array}{ccc}1-v w & 1-u w & 1-u v \\ 2 u & 2 v & 1\end{array}\right)$. With \mathbf{g} as above, find $D(\mathbf{f} \circ \mathbf{g})(1,2)$.
4. (15) (Show all work). Consider the path $\mathbf{c}(t)=(\sin (5 t), \sqrt{3} \sin (5 t), 2 \cos (5 t))$.
(a) For which values of α, β, γ is $\mathbf{c}(t)$ a flowline for the vector field $\mathbf{F}(x, y, z)=(\alpha z, \beta z, \gamma x) ?$
(b) Compute the arclength of $\mathbf{c}(t)$ for t from 1 to 5 .

NAME (Print!): \qquad
Math 13
21 October 2003
First Hour Exam

Problem	Points	Score
1	10	
2	15	
3	15	
4	15	
5 (Take home)	15	
6 (Take home)	15	
7 (Take home)	15	
Total	100	

