Practice Exam 1

Problem 1: Let $f(x, y)=2+\ln \left(x^{2}+y^{2}\right)$. Sketch at least 3 level curves of f in the $x y$-plane. Sketch the graph of f.

Problem 2: Let $\mathbf{f}(x, y)=\left(x^{2} y, 5 x-3 y^{2}\right)$ and let $\mathbf{g}(s, t)=\left(s^{3}+t^{2}, \frac{s}{t}\right)$.
a. Calculate $D \mathbf{f}$ and $D \mathbf{g}$.
b. Use part a and the Chain Rule to calculate $D(\mathbf{f} \circ \mathbf{g})(1,1)$.

Problem 3: Assume the surface of a mountain is given by the graph of a differentiable function. If the slope heading due east from the point a is $1 / 3$ and the slope heading due north from that point is $-1 / 3$, in what direction should you head to descend most rapidly?

Problem 4: The voltage V in a circuit slowly decreases as the battery wears out. The resistance R slowly increases as the resistor heats up. Use Ohm's Law, $V=I R$, to find how the current I is changing at the moment when $R=400 \Omega, I=.08 A, \frac{d V}{d t}=-.01 \mathrm{~V} / \mathrm{s}$, and $\frac{d R}{d t}=.03 \Omega / \mathrm{s}$.

Problem 5: Let $\mathbf{F}(x, y, z)=\left(-z, y^{2}, x\right)$.
a. Compute curl \mathbf{F}.
b. Verify that $\mathbf{x}(t)=\left(3 \cos t, \frac{1}{2-t}, 3 \sin t\right)$ is a flow line of \mathbf{F}.

Problem 6:

a. Describe the following region in \mathbb{R}^{2} using polar coordinates: the region inside the circle $x^{2}+y^{2}=2$ and to the right of the line $x=1$.
b. Describe the following solid region in \mathbb{R}^{3} using spherical coordinates: the region lying above the $x y$-plane, inside the sphere $x^{2}+y^{2}+z^{2}=4$ and outside the cone $z=\sqrt{x^{2}+y^{2}}$.

Problem 7: Consider the following sum of integrals.

$$
\int_{0}^{\sqrt{2} / 2} \int_{-\sqrt{1-y^{2}}}^{\sqrt{2} / 2} 2 y d x d y+\int_{\sqrt{2} / 2}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} 2 y d x d y
$$

Switch the order of integration to turn this sum of two double integrals into a single double integral and evaluate it.

Problem 8: Set up an iterated integral which gives the volume of the region bonded by the parabaloid $y=4 x^{2}+4 z^{2}$ and the plane $y=4$.

Problem 9: Consider the cone $z^{2}=x^{2}+y^{2}$. Show that for any point (a, b, c) on the cone other than $(0,0,0)$, the tangent plane at the point (a, b, c) intersects the origin.

