
Solutions to Practice Exam 2

Problem 1: For each of the following, set up (but do not evaluate) iterated integrals or quotients of iterated
integral to give the indicated quantities:

Problem 1a: The average temperature at points in the region W lying between the paraboloids z =
12 − x2 − y2 and z = 2(x2 + y2) if the temperature is inverse proportional to the distance from the z-axis.
(Use cylindrical coordinates.)

Solution: We first find where the two paraboloids intersect. We want to solve 12 − x2 − y2 = 2(x2 + y2),
which is equivalent to 12 = 3x2 + 3y2 or x2 + y2 = 4. Thus, the two paraboloids intersect above the circle
x2 + y2 = 4 (the circle centered at the origin with radius 2) with value z = 8. Since z = 12 − x2 − y2

is a paraboloid opening downward and z = 2(x2 + y2) is a paraboloid opening upward, it follows that the
projection of W in the xy-plane is the disk bounded by x2+y2 = 4. In cylindrical coordinates, the paraboloid
z = 12−x2− y2 is given by z = 12− r2 and the paraboloid z = 2(x2 + y2) is given by z = 2r2. Furthermore,
out temperature function is given by T (x, y) = k√

x2+y2
= k

r , so the integral of T over W equals

∫ ∫ ∫
W

T (x, y, z) dV =
∫ 2π

0

∫ 2

0

∫ 12−r2

2r2

k

r
· r dz dr dθ =

∫ 2π

0

∫ 2

0

∫ 12−r2

2r2
k dz dr dθ

The volume of W is given by ∫ ∫ ∫
W

1 dV =
∫ 2π

0

∫ 2

0

∫ 12−r2

2r2
r dz dr dθ

Thus, the average temperature equals ∫ 2π

0

∫ 2

0

∫ 12−r2

2r2
k dz dr dθ∫ 2π

0

∫ 2

0

∫ 12−r2
2r2

r dz dr dθ

Problem 1b: The moment of inertia about the z-axis of the region lying outside the double cone z2 = x2+y2

and inside the ball x2 + y2 + z2 = 1 if δ(x, y, z) = k.

Solution: We use spherical coordinates. Notice that the ball has spherical coordinates ρ = 1. Since
x2 + y2 = ρ2 sin2 ϕ in spherical coordinates, notice that z2 = x2 + y2 in spherical coordinates is

ρ2 cos2 ϕ = ρ2 sin2 ϕ

which is equivalent to
sin2 ϕ = cos2 ϕ

which in turn is equivalent to
tan2 ϕ = 1

or more simply
tanϕ = ±1
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Since 0 ≤ ϕ ≤ π, the double cone is simply given by ϕ = π
4 or ϕ = 3π

4 . Therefore, the integral giving the
moment of inertia about the z-axis is∫ ∫ ∫

R

(x2 + y2)δ(x, y, z) dV =
∫ ∫ ∫

R

k(x2 + y2) dV

=
∫ 2π

0

∫ 3π/4

π/4

∫ 1

0

k(ρ2 sin2 ϕ)(ρ2 sinϕ) dρ dϕ dθ

=
∫ 2π

0

∫ 3π/4

π/4

∫ 1

0

kρ4 sin3 ϕ dρ dϕ dθ

Problem 2: The base of a fence lies along the part of the parabola y = x2, 1 ≤ x ≤ 2, and the height of
the fence at the point (x, y) is given by h(x, y) = x (in feet). Find the area of the fence.

Solution: We parametrize the curve by x(t) = (t, t2) for 1 ≤ t ≤ 2. We then have x′(t) = (1, 2t) for all t,
hence

||x′(t)|| =
√

12 + (2t)2 =
√

1 + 4t2

for all t. We also have
h(x(t)) = h(t, t2) = t

for all t. Using the substitution u = 1 + 4t2, we have du = 8t dt and hence∫
x

h ds =
∫ 2

1

h(x(t))||x′(t)|| dt

=
∫ 2

1

t
√

1 + 4t2 dt

=
∫ 17

5

√
u

8
du

= (
2
3
· u

3/2

8
)|u=17
u=5

=
u3/2

12
|175

=
173/2

12
− 53/2

12

=
173/2 − 53/2

12

Problem 3: Consider the transformation T (u, v) = (u2 cos(v), u2 sin(v)). Describe (e.g., by a picture) how
T transforms the rectangle [0, 2]× [0, π2 ].

Solution: See the images file for a sketch.

• T (u, 0) = (u2 · 1, u2 · 0) = (u2, 0) for 0 ≤ u ≤ 2. Thus, T maps the bottom of the rectangle onto [0, 4]
of the x-axis.

• T (2, v) = (22 cos v, 22 sin v) = (4 cos v, 4 sin v) for 0 ≤ v ≤ π
4 . Thus, T maps the right side of the

rectangle onto the circle of radius 4 in the first quadrant.
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• T (u, π2 ) = (u2 · 0, u2 · 1) = (0, u2) for 0 ≤ u ≤ 2. Thus, T maps the top of the rectangle onto [0, 4] of
the y-axis.

• T (0, v) = (02 cos v, 02 sin v) = (0, 0) for 0 ≤ v ≤ π
4 . Thus, T collapses the left side of the rectangle onto

the origin.

In general, for any (u, v) ∈ [0, 2]× [0, π2 ], the point T (u, v) is on the circle of radius u2 centered at the origin
because √

(u2 cos v)2 + (u2 sin v)2 =
√
u4 cos2 v + u4 sin2 v =

√
u4 = u2

and T (u, v) is makes an angle of v with the x-axis because

u2 sin v
u2 cos v

= tan v

Summing up, the point T (u, v) has polar coordinates (u2, v). Thus, T maps [0, 2] × [0, π2 ] onto the part of
the disk enclosed by x2 + y2 = 4 in the first quadrant.

Problem 4: A snowball rolls downhill along a curvy path given by x(t) = (t, t3, 25− t2), 0 ≤ t ≤ 5 (where
the first two coordinates denote it’s position east-west and north-south and the third coordinate denotes its
elevation). The snowball steadily increases in size as it rolls so that its weight at time t is given by 2 + 3t
pounds. Find the total work done by gravity on the snowball. (The gravitational force has magnitude equal
to the weight of the snowball and points directly down, i.e., in the direction of −k.)

Solution: Notice that for every t, we have

F(x(t)) = −(2 + 3t)k

and also
x′(t) = (1, 3t2,−2t)

and hence
F(x(t)) · x′(t) = −(2 + 3t)(−2t) = 4t+ 6t2

Therefore, the total done by gravity on the snowball equals∫
x

F · ds =
∫ 5

0

(4t+ 6t2) dt

= (2t2 + 2t3)|50
= 50 + 250
= 300

Problem 5: Let D be a region bounded by a simple closed curve C in the xy-plane. Use Green’s theorem
to prove that the coordinates of the centroid of D are given by

x̄ =
1

2A

∮
C

x2 dy

and
ȳ =

1
2A

∮
C

−y2 dx
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where A is the area of D.

Solution: Suppose that δ(x, y) = k. We have

1
2A

∮
C

x2 dy =
1

2A

∫ ∫
D

(
∂

∂x
(x2)− ∂

∂y
(0)) dA (by Green’s Theorem)

=
1

2A

∫ ∫
D

(2x− 0) dA

=
2

2A

∫ ∫
D

x dA

=

∫ ∫
D
x dA

A

=
k

∫ ∫
D
x dA

k
∫ ∫

D
1 dA

=

∫ ∫
D
kx dA∫ ∫

D
k dA

= x̄

and also

1
2A

∮
C

−y2 dx =
1

2A

∫ ∫
D

(
∂

∂x
(0)− ∂

∂y
(−y2)) dA (by Green’s Theorem)

=
1

2A

∫ ∫
D

(0− (−2y)) dA

=
2

2A

∫ ∫
D

y dA

=

∫ ∫
D
y dA

A

=
k

∫ ∫
D
y dA

k
∫ ∫

D
1 dA

=

∫ ∫
D
ky dA∫ ∫

D
k dA

= ȳ

Problem 6: Each of the following is difficult or impossible to evaluate directly but can be computed by
other methods. Compute each one and justify your method.

Problem 6a:
∫
C

2x dx+ cos(y2) dy where C is the semicircle x2+y2 = 1, y ≥ 0, traced from (−1, 0) to (1, 0).

Solution: Notice that
∂

∂x
(cos(y2)) = 0 =

∂

∂y
(2x)

so since we are working on the simply-connected region R2, it follows that the vector field F(x, y) =
(2x, cos(y2)) is conservative. A potential is quite hard to come by because we can not integrate cos(y2)
with respect to y. However, we know that F has path-independent line integrals, so we may evaluate the line
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integral by choosing the straight line path from (−1, 0) to (1, 0). We parametrize this path by x(t) = (t, 0)
for −1 ≤ t ≤ 1. Since x′(t) = (1, 0) for every t, we have∫

C

2x dx + cos(y2) dy =
∫
x

2x dx + cos(y2) dy

=
∫ 1

−1

(2t · 1 + cos(02) · 0) dt

=
∫ 1

−1

2t dt

= t2|1−1 dt

= 1− 1
= 0

Problem 6b:
∫
C

3x2y2 dx+ 2x3y dy where C is the path x(t) = (et
2
, t2), 0 ≤ t ≤ 1

Solution: Notice that
∂

∂x
(2x3y) = 6x2y =

∂

∂y
(3x2y2)

so since we are working on the simply-connected region R2, it follows that the vector field F(x, y) =
(3x2y2, 2x3y) is conservative. We look for a potential function f . We need our f to satisfy

1. fx(x, y) = 3x2y2

2. fy(x, y) = 2x3y

Integrating (1) with respect to x, we know that

f(x, y) = x3y2 + g(y)

for some function g. Now taking the partial of this with respect to y, we see that

fy(x, y) = 2x3y + gy(y)

and comparing that with (2) above we can conclude that gy(y) = 0 for all y. Therefore, g(y) = c for some
constant c, and hence for every c

f(x, y) = x3y2 + c

is a potential function for F. We work with the potential function f(x, y) = x3y2. Notice that the initial
point of our path is x(0) = (e0, 02) = (1, 0) and the terminal point of our path is x(1) = (e1, 12) = (e, 1).
Therefore, since F is conservative with potential function f(x, y) = x3y2, it follows that∫

C

3x2y2 dx+ 2x3y dy = f(e, 1)− f(1, o)

= e3 · 12 − 13 · 02

= e3
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