Practice Final Exam

Problem 1: Let $f(x, y)=\frac{6}{1+x^{2}+y^{2}}$ for all $x, y \in \mathbb{R}$.
a. Sketch at least 3 level curves of f in the $x y$-plane.
b. Sketch the graph of f.
c. Find the tangent plane to the graph of f at the point $(1,1,2)$.

Problem 2: Show that the ellipsoid $3 x^{2}+2 y^{2}+z^{2}=9$ and the sphere $x^{2}+y^{2}+z^{2}-8 x-6 y-8 z+24=0$ are tangent at the point $(1,1,2)$. That is, show that this point is on each of the surfaces and that the tangent planes at $(1,1,2)$ of both are equal.

Problem 3: Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are continuously differentiable functions and suppose you know the following facts about f and g :

$$
\begin{aligned}
f(1,2) & =(3,4) \\
D f(1,2) & =\left(\begin{array}{ll}
3 & 7 \\
2 & 6
\end{array}\right) \\
D g(1,2) & =\left(\begin{array}{ll}
1 & 1 \\
2 & 4
\end{array}\right) \\
D g(3,4) & =\left(\begin{array}{ll}
4 & 8 \\
1 & 2
\end{array}\right)
\end{aligned}
$$

Find $D(g \circ f)(1,2)$.
Problem 4: Convert the following sum of integrals in cylindrical coordinates to a single iterated integral in spherical coordinates (you need not evaluate the result):

$$
\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{r} r z d z d r d \theta+\int_{0}^{2 \pi} \int_{1}^{\sqrt{2}} \int_{0}^{\sqrt{2-r 2}} r z d z d r d \theta
$$

Problem 5:

a. Calculate the work done by the force field $\mathbf{F}(x, y)=\left(5 x^{2} y, e^{y}\right)$ on a particle that moves along the parabola $y=x^{2}$ from $(-1,1)$ to $(2,4)$.
b. Let C be the curve which is the boundary of the region between the parabola $x=y^{2}-4$, the line $x=0$, and the line $y=0$. Orient C so that you are traversing it clockwise. Evaluate $\int_{C} y^{2} d x+\left(3 x y+\cos \left(y^{3}\right)\right) d y$.

Problem 6: Recall that the volume of a sphere of radius 1 equals $\frac{4}{3} \pi$. Let E be the inside of the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Find the volume of E by using a change of variables to compute $\iiint_{E} 1 d V$.
Problem 7: Let $\mathbf{F}(x, y, z)=z^{2} \mathbf{i}+x \mathbf{j}+0 \mathbf{k}$, and let S be the part of the parabolic cylinder $z=y^{2}$ lying between the planes $x=0$ and $x=1$ and below the plane $z=1$. Give S the "outward" pointing normal (its \mathbf{k} component is negative). Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$.

Problem 8: Evaluate each of the following by using one of Gauss' Theorem or Stokes' Theorem.
a. $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ where $\mathbf{F}(x, y, z)=x \mathbf{i}+e^{x^{2}} \mathbf{j}+\mathbf{k}$ and where S is the part of the sphere $x^{2}+y^{2}+z^{2}=1$ with $z \geq 0$, oriented so that \mathbf{n} is "outward" (away from the origin).
b. $\int_{C} e^{x^{2}} d x+x d y+d z$ where C is given by $\mathbf{x}(t)=(\cos t, \sin t, \cos t+\sin t)$ for $0 \leq t \leq 2 \pi$.

Problem 9: Suppose that S is the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ oriented so that \mathbf{n} is "outward" (away from the origin). Show that

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=0
$$

for every C^{2} vector field \mathbf{F}.

