{{{id=1| var('t') polar_plot(4*sin(t),(t,0,pi)) /// }}} {{{id=2| polar_plot(4*sin(t),(t,0,pi), thickness=3)+polar_plot(2,(t,0,2*pi),thickness=3,color="red") /// }}} {{{id=3| polar_plot(4*sin(t),(t,0,pi), thickness=3)+polar_plot(2,(t,0,2*pi),thickness=3,color="red")+line([(0,0),(1.5*sqrt(3),1.5)], thickness = 3, color="green")+line([(0,0),(-1.5*sqrt(3),1.5)], thickness = 3, color="green") /// }}}
The Mass
{{{id=4| var('r t'); integral(integral(r*cos(t)^2,(r,2,4*sin(t))),(t,pi/6,5*pi/6)) /// 1/4*(3*sqrt(3)) }}} {{{id=11| M=integral(integral(r*cos(t)^2,(r,2,4*sin(t))),(t,pi/6,5*pi/6)) /// }}} {{{id=12| M /// 1/4*(3*sqrt(3)) }}}The $x$-moment, $M_x$
{{{id=5| Mx=integral(integral(r^2*sin(t)*cos(t)^2,(r,2,4*sin(t))),(t,pi/6,5*pi/6)) Mx /// 8/9*pi + 1/18*(3*sqrt(3)) + 1/6*sqrt(3) - 1/3*sqrt(3) }}} {{{id=7| Mx.simplify() /// 8/9*pi }}} {{{id=9| y_bar = Mx/M y_bar.simplify() /// 32/81*sqrt(3)*pi }}} {{{id=10| y_bar.simplify().n() /// 2.14968813538870 }}}Check the $y$-moment, $M_y$
{{{id=13| My=integral(integral(r^2*cos(t)*cos(t)^2,(r,2,4*sin(t))),(t,pi/6,5*pi/6)) My /// 0 }}} {{{id=15| /// }}}