
Math 13 Spring 2017
Final Examination

Thursday, June 1st

Name:

Instructor: 2 Prof. Clare 2 Prof. Song

INSTRUCTIONS

This is a closed book, closed notes exam.

There are 15 problems. You have 3 hours.

Use of calculators is not permitted.

On each open-ended question you must show your work. No credit is given for solutions without
supporting calculations. No justification is required for multiple-choice questions.

The Honor Principle requires that you neither give nor receive any aid on this exam.

GOOD LUCK!

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 total



(1) (12 points) For each of the following assertions, select the correct ending.

(a) If f(x, y) is a function, then

∫ 2

0

∫ x

0
f(x, y) dy dx = . . .

�
∫ 2

0

∫ 2

0
f(x, y) dx dy.

�
∫ 2

0

∫ x

0
f(x, y) dx dy.

�
∫ 2

0

∫ y

0
f(x, y) dx dy.

�
∫ 2

0

∫ 2

y
f(x, y) dx dy.

�
∫ x

0

∫ 2

0
f(x, y) dx dy.

� none of the above.

(b) A potential for the vector field F(x, y, z) = sin(yz2)i+xz2 cos(yz2)j+2xyz cos(yz2)k
is...

�
〈
0 , −xz4 sin(yz2) , −4xy2z2 sin(yz2)

〉
.

�
〈
sin(yz2) , xz2 cos(yz2) , 2xyz cos(yz2)

〉
.

� x sin(yz2) + 2.

� −xz2(z2 + 4y2) sin(yz2).

� none of the above.



(c) Let F(x, y, z) be a vector field defined on an open, connected and simply connected
domain. Then F is conservative if and only if...

� F = ∇f for some scalar function f(x, y, z).

� ∇× F = 0.

�
∮

Γ
F · dr = 0 for any closed curve Γ in the domain of F.

� all of the above.

� none of the above.

(d) The Fundamental Theorem of line integrals...

� applies to scalar functions.

� only applies to conservative vector fields.

� applies to all vector fields.

� only applies to plane curves, not to curves in 3-dimensional space.

� none of the above.



(2) (7 points) Calculate ∫∫
R

x

1 + xy
dA

where R = [0, 1]× [0, 1].

Hint: an antiderivative of lnx is x lnx− x.



(3) (7 points) Find the volume of the solid bounded by the planes x = 0, y = 2, z = 0,
y = 2x and the surface z = y2.



(4) (3+4=7 points) Consider the iterated integral I =

∫ 3

0

∫ √9−x2

0
(x2 + y2) dy dx.

(a) Sketch the domain of integration in the xy-plane.

x

y

(b) Evaluate I.



(5) (6 points) LetW be a solid with density δ(x, y, z). Match the following quantities with
their expression:

A. Total mass of W
B. y-coordinate of the center of mass

C. Mean value of the density∫∫∫
W x dV∫∫∫
W dV

∫∫∫
W y dV∫∫∫
W dV

∫∫∫
W z dV∫∫∫
W dV

∫∫∫
W

1 dV

∫∫∫
W
δ(x, y, z) dV

∫∫∫
W δ(x, y, z) dV∫∫∫

W dV

∫∫∫
W x δ(x, y, z) dV∫∫∫
W δ(x, y, z) dV

∫∫∫
W y δ(x, y, z) dV∫∫∫
W δ(x, y, z) dV

∫∫∫
W z δ(x, y, z) dV∫∫∫
W δ(x, y, z) dV



(6) (6 points) Let D be the domain bounded by the curves y = x, y = 3x, xy = 1 and

xy = 3 in the first quadrant. What does the integral

∫∫
D
xy dA become under the change

of variables x =
u

v
, y = v?

�
∫ 3

1

∫ 3

1
u dv du.

�
∫ 3

1

∫ √3u

√
u

u dv du.

�
∫ 3

1

∫ 3u2

u2
u dv du.

�
∫ 3

1

∫ 3

1

u

v
dv du.

�
∫ 3

1

∫ √3u

√
u

u

v
dv du.

�
∫ 3

1

∫ 3u2

u2

u

v
dv du.



(7) (3+4=7 points) Let Γ be the curve parametrized by r(t) = ti+ 2tj+ etk for 0 ≤ t ≤ 1.

(a) Determine the starting point and the end point of Γ.

(b) Consider the function f(x, y, z) = x
√
y ln(1 + x− y + z) and let F = ∇f .

Evaluate

∫
Γ
F · dr.



(8) (6 points) Let Σ be the part of the sphere with equation x2 + y2 + z2 = 1 in the x < 0

region. The integral

∫∫
Σ
x dS is equal to...

�
∫ π

0

∫ π

0
cos θ sinϕdθ dϕ.

�
∫ π

0

∫ 3π
2

π
2

cos θ sinϕdθ dϕ.

�
∫ π

0

∫ 2π

0
cos θ sinϕdθ dϕ.

�
∫ π

0

∫ 2π

0
cos θ sin2 ϕdθ dϕ.

�
∫ π

0

∫ 3π
2

π
2

cos θ sin2 ϕdθ dϕ.

�
∫ π

0

∫ π

0
cos θ sin2 ϕdθ dϕ.

�
∫ π

0

∫ 2π

0

∫ 1

0
cos θ sin2 ϕρ dρ dθ dϕ.

�
∫ π

0

∫ 3π
2

π
2

∫ 1

0
cos θ sin2 ϕρ dρ dθ dϕ.

�
∫ π

0

∫ π

0

∫ 1

0
cos θ sin2 ϕρ dρ dθ dϕ.



(9) (6 points) Let Σ be the surface parametrized by

S(u, v) =
(
u2 , v2 , u+ 2v

)
for 0 ≤ u ≤ 2 and 0 ≤ v ≤ 2.

Find an equation for the plane tangent to Σ at the point (1, 1, 3).

Present your answer in the form ax+ by+ cz+ d = 0 (with a, b, c, d to be determined).



(10) (7 points) Evaluate

∫
Σ
F · dS where

F(x, y, z) =
〈
xy , 4x2, yz

〉
and Σ is the surface z = xey for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, oriented in the positive
x-direction.



(11) (7 points) Calculate the integral of the vector field

F(x, y) =
〈
y3 + 2xy + 2y − e−x2 , x2 + 3xy2 + 5x+ cos(

√
y)
〉

along the closed rectangular path drawn below.

x

y

1

π



(12) (7 points) Use Green’s Theorem to calculate the area of the full elliptic domain with

equation
x2

a2
+
y2

b2
≤ 1.

Hint: it might be useful to observe that one of the following is a parametrization of the
ellipse (for 0 ≤ t ≤ 2π){

x(t) = a cos t
y(t) = b sin t


x(t) =

cos t

a

y(t) =
sin t

b

.

x

y

−a a

b

−b



(13) (7 points) Let S be the hemisphere x2 + y2 + z2 = 9 in the z ≥ 0 region, oriented

upward and F(x, y, z) = 2x cos zi + ex sin zj + xeyk. Evaluate

∫∫
S

curlF · dS.



(14) (5 points) Let Σ denote the part of the paraboloid y = x2+z2 with 0 ≤ y ≤ 1. Consider

F(x, y, z) =
〈
z
√

7 + y + ex
2
, xy + sin

√
y , 0

〉
.

Evaluate

∫∫
Σ

curlF · dS, using normal vectors pointing in the positive y-direction.

Hint: it might help to use surface invariance.



(15) (5 points) Let F be a vector field defined on a simple solid region W with boundary

the closed surface S. Then,

∫∫
S

curlF · dS is...

� a vector.

�
∫∫∫

W
divF dV .

� 0 be the Divergence Theorem.

� 0 by Stokes Theorem.

� not well-defined.

� none of the above.
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