Instructors: Lizuo Liu, David Freeman, Thomas Zdyrski

Course on canvas.dartmouth.edu.

Syllabus

Week Day Date Section Topic
1 1 Mon Mar 31 Introduction and Review
1 2 Wed Apr 2 5.1 Double Integrals over Rectangular Regions
1 3 Fri Apr 4 5.2 Double Integrals over General Regions
2 4 Mon Apr 7 5.3 Double Integrals in Polar Coordinates
2 5 Wed Apr 9 5.4 Triple Integrals
2 6 Fri Apr 11 5.5 Triple Integrals in Cylindrical Coordinates
3 7 Mon Apr 14 5.5 Triple Integrals in Spherical Coordinates 1
3 8 Wed Apr 16 5.5 Triple Integrals in Spherical Coordinates 2
3 9 Fri Apr 18 Review of sections 2.3, 2.5, 3.1-3.2, and 4.3
4 10 Mon Apr 21 5.7 Change of Variables in Multiple Integrals 1
4 11 Wed Apr 23 5.7 Change of Variables in Multiple Integrals 2
4 12 Fri Apr 25 6.1 Vector Fields
5 13 Mon Apr 28 6.2 Line Integrals 1
5 14 Wed Apr 30 6.2 Line Integrals 2
5 15 Fri May 2 6.3 Conservative Vector Fields 1
6 16 Mon May 5 6.3 Conservative Vector Fields 2
6 17 Wed May 7 6.4 Green's Theorem 1
6 18 Fri May 9 6.4 Green's Theorem 2
7 19 Mon May 12 6.5 Divergence and Curl 1
7 20 Wed May 14 6.5 Divergence and Curl 2
7 21 Fri May 16 6.6 Surface Integrals 1
8 22 Mon May 19 6.6 Surface Integrals 2
8 23 Wed May 21 6.6 Surface Integrals 3
8 24 Fri May 23 6.7 Stokes' Theorem 1
9 25 Wed May 28 6.7 Stokes' Theorem 2
9 26 Fri May 30 6.8 The Divergence Theorem 1
10 27 Mon Jun 2 6.8 The Divergence Theorem 2
11 28 Wed Jun 4 Review of The Fundamental Theorems