Math 13 - First Hour Exam - January 30, 2002

Part I: Multiple choice. Each problem is worth 5 points.

1. The following is the tangent line to $\mathbf{c}(t)=\left(e^{t}, \sin t, \cos t\right)$ at $t_{0}=0$:
(a) $(1,1,0)$
(b) $(1+t, 0,1)$
(c) $(1+t, t, 1)$
(d) $(t, 1, t)$
2. The following vector is normal to the plane $3(x-1)+2 y-z=4$
(a) $(4,0,0)$
(b) $(3,0,0)$
(c) $(3,2,-1)$
(d) $(4,0,-4)$
3. Consider the matrices: $A=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right], B=\left[\begin{array}{ccc}1 & 1 & 3 \\ 1 & -1 & 5\end{array}\right]$, $C=\left[\begin{array}{rr}4 & 2 \\ 3 & -1 \\ 8 & 0\end{array}\right]$.
Of the following matrix products, which make sense? $\mathrm{AC}, \mathrm{AB}, \mathrm{CB}$, and BC.
(a) CB and AB
(b) AC, AB, and CB
(c) all of them
(d) AB, CB, and BC
4. Which of the following is NOT a gradient field?
(a) $\mathbf{F}=(y z-2 y, x z-2 x, x y)$
(b) $\mathbf{F}=\left(z^{2}+y, x, z y x\right)$
(c) Neither are gradient fields
(d) Both are gradient fields
5. The path in the $x y$-plane of a particle following the ellipse $2 x^{2}+y^{2}=2$ in the counterclockwise direction is described by:
(a) $\mathbf{c}(t)=(2 \cos t, \sin t)$
(b) $\mathbf{c}(t)=(\cos t, \sqrt{2} \sin t)$
(c) $\mathbf{c}(t)=(\sqrt{2} \sin t, \cos t)$
(d) $\mathbf{c}(t)=(2 \sin t, \cos t)$
6. Let the acceleration of a particle in the plane be given by $\mathbf{a}=\left(24 t, e^{t}\right)$. Suppose that it's initial velocity at $t=0$ is $(1,1)$, and it's initial position at $t=0$ is $(2,2)$. Then the particle is moving on the following path:
(a) $\left(12 t^{2}, e^{t}\right)$
(b) $\left(4 t^{3}+t+2, e^{t}+1\right)$
(c) $\left(4 t^{3}+t+2, e^{t}+t+2\right)$
(d) $\left(4 t^{3}, e^{t}\right)$
7. True False: State whether the following statements are true or false, in the order (1), (2), (3).
(1) A flow line of a vector field is a curve which the field is perpendicular to at each point of the curve.
(2) If \mathbf{a} and \mathbf{b} are perpendicular, then $\mathbf{a} \cdot \mathbf{b}=0$
(3) A plane is perpendicular to the cross product of any two vectors in it.
(a) TTT
(b) TTF
(c) FTT
(d) FTF
8. Let \mathbf{F} and \mathbf{G} be vector fields, and let f be a scalar function of three variables $\left(\mathbf{F}\right.$ and $\mathbf{G}: \Re^{3} \longrightarrow \Re^{3}$ and $\left.f: \Re^{3} \longrightarrow \Re\right)$. Do the following statements make mathematical sense, ie, can the operations be performed? Answer Y or N in the order (1) - (5).
(1) $\operatorname{div}(\mathbf{F} \times \mathbf{G})$
(2) $\nabla f \times \mathbf{F}$
(3) the curl of $\mathbf{F} \cdot \mathbf{G}$
(4) the cross product of a vector field and its curl
(5) the dot product of ∇f and $\operatorname{div}(\mathbf{F})$
(a) YNNYY
(b) YYNYN
(c) NYNYN
(d) YYYNY
9. Which of the following level surfaces is expressible as a graph $z=f(x, y)$ about the point $(0,1,1)$?
(a) $x z e^{y}+\frac{1}{3} z^{3}-z y=0$
(b) $\frac{1}{4} z^{4} y+z \cos \left(x^{2}\right)=0$
(c) Both of the above are expressible as $z=f(x, y)$
(d) Neither of the above are expressible as $z=f(x, y)$
10. Match the equations to the surfaces (or parts of surfaces) that they map in \Re^{3}.
(i) $z=x^{2}+y^{2}$
(α) cone
(ii) $z=\sqrt{x^{2}+y^{2}}$
(β) plane
(iii) $3=x^{2}+y^{2}$
(γ) cylinder
(iv) $z=\sqrt{4-x^{2}-y^{2}}$
(δ) sphere
(v) $z=5-x+2 y$
(ϵ) paraboloid

Which of the following is true?
(a) $(i)-\gamma,(i i)-\alpha,(i i i)-\epsilon,(i v)-\delta,(v)-\beta$
(b) $(i)-\epsilon,(i i)-\delta,(i i i)-\gamma,(i v)-\beta,(v)-\alpha$
(c) $(i)-\alpha,(i i)-\epsilon,(i i i)-\delta,(i v)-\beta,(v)-\gamma$
(d) $(i)-\epsilon,(i i)-\alpha,(i i i)-\gamma,(i v)-\delta,(v)-\beta$

Part II: You can earn partial credit on the next five problems.
11. (10 points) Location on a particular mountain is given by points in the $x-y$ plane where north is in the positive y direction. The elevation in feet above sea level at a point (x, y) is given by $g(x, y)=10000-2 x^{2}-y^{2}$. If you are standing at point $(1,1)$,
(a) What is the rate of change of elevation in the south-eastern direction (ie, in direction of vector $\mathbf{i}-\mathbf{j}$)?
(b) In what direction is the mountain decreasing in elevation the fastest from point $(1,1)$?
12. (10 points) Suppose that $f(x, y, z)=\left(2 x y, e^{x z}\right)$ and $g(u, v)=(\cos u, v u)$.
(a) If $f: \Re^{n} \longrightarrow \Re^{m}$ and $g: \Re^{p} \longrightarrow \Re^{q}$, what are n, m, p and q ?
(b) Which of the compositions, $f \circ g$ or $g \circ f$, is (are) defined?
(c) For any compositions that are defined, compute their derivative matrix.
13. (10 points) Find the arc length of $\mathbf{c}(t)=\left(1,3 t^{2}, t^{3}\right)$ from $(1,0,0)$ to $(1,12,8)$.
14. (10 points) Find the equation of the tangent plane to the surface $z=$ $e^{x}(\sin y+1)$ at $\left(0, \frac{\pi}{2}, 2\right)$.
15. (10 points) Find the divergence and curl of

$$
\mathbf{F}(x, y, z)=\left(x \sin z,-2 x z, z^{2}+2 y\right)
$$

