Scalar and Vector Line Integrals

February 8, 2006

Scalar Line Integrals

Let $\mathbf{x} : [a, b] \to \mathbb{R}^3$ be a path of class C^1 . And $f : X \subseteq \mathbb{R}^3 \to \mathbb{R}$ be a continuous function such that the domain X contains the image of \mathbf{x} . The scalar line integral of f along \mathbf{x} is

$$\int_{a}^{b} f(\mathbf{x}(t)) \|\mathbf{x}'(t)\| dt$$

NOTATION: This integral is usually written $\int_{\mathbf{X}} f \, ds$.

1

Vector Line Integral

The vector line integral of \mathbf{F} along \mathbf{x} : $[a,b] \to \mathbb{R}^n$ is

$$\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt$$

Physical Interpretation of Line Integrals

If \mathbf{F} is a force field in space, then the vector line integral is the **work** done by \mathbf{F} on a particle as the particle moves along the path \mathbf{x} .

Tangent and Vector Line Integral

Let $\mathbf{x} : [a, b] \to \mathbb{R}^n$ with $\mathbf{x}'(t) \neq 0$ in [a, b]. Unit tangent vector \mathbf{T} :

$$\mathbf{T}(t) = \frac{\mathbf{x}'(t)}{\|\mathbf{x}'(t)\|}.$$

Then

$$\int_{\mathbf{X}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{X}} (\mathbf{F} \cdot \mathbf{T}) \, ds$$

Reparametrizations of Paths

We say that $\mathbf{y} : [c,d] \to \mathbb{R}^n$ is a **reparametrization** of the path $\mathbf{x} : [a,b] \to \mathbb{R}^n$ if both describe the same curve.

Mathematically, this means that there is a one-to-one and onto C^1 function $u : [a, b] \rightarrow [c, d]$ such that $\mathbf{x}(u(t)) = y(t)$.

Scalar Line Integrals Do NOT depend on parametrization

Theorem: If \mathbf{y} is a reparametrization of \mathbf{x} then

$$\int_{\mathbf{y}} f \, ds = \int_{\mathbf{x}} f \, ds$$

Scalar Line Integrals and parametrizations

If \boldsymbol{y} is a reparametrization of $\boldsymbol{x}.$ Then

- If y is orientation-preserving, then $\int_{\mathbf{y}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s}$
- If y is orientation-reversing, then $\int_{\mathbf{y}} \mathbf{F} \cdot d\mathbf{s} = -\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s}$