Green's Theorem

February 14, 2006

Green's Theorem

D is closed bounded region and $C = \partial D$ its boundary. Let $\mathbf{F}(x, y) = M(x, y)\mathbf{i} + N(x, y)\mathbf{j}$ a vector field. Then

$$\oint_C M \, dx + N \, dy = \iint_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dx \, dy$$

WARNING: Here C must be oriented so that D is on the left as one traverses C.

Vector Formulation of Green's Theorem

 $\mathbf{F}(x,y) = M(x,y)\mathbf{i} + N(x,y)\mathbf{j}$

$$\oint_{\partial D} \mathbf{F} \cdot d\mathbf{s} = \iint_{D} (\nabla \times \mathbf{F}) \cdot \mathbf{k} \, dA$$

Recall: $\nabla \times \mathbf{F}$ is the curl of \mathbf{F} .

Divergence Theorem in the plane

D is a closed bounded region and **n** is the outward unit normal vector to *D* and $\mathbf{F} = M(x,y)\mathbf{i} + N(x,y)\mathbf{j}$, then

$$\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_D \nabla \cdot \mathbf{F} \, dA.$$

Recall: $\nabla \cdot \mathbf{F}$ is the divergence.